催化学报 ›› 2026, Vol. 80: 293-303.DOI: 10.1016/S1872-2067(25)64804-2

• 论文 • 上一篇    下一篇

双位点限域策略调控Fe-N-C电子结构提升质子交换膜燃料电池氧还原性能

时文博a, 朱凯a, 付小刚b, 刘陈红a, 原洋a, 潘家梁a, 张庆a,*(), 白正宇a,*()   

  1. a河南师范大学化学与化工学院, 绿色化学介质与反应教育部重点实验室, 河南新乡 453007
    b西北工业大学材料科学与工程学院, 凝固加工国家重点实验室原子控制与催化工程实验室, 陕西西安 710072
  • 收稿日期:2025-05-30 接受日期:2025-07-12 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 张庆,白正宇
  • 基金资助:
    国家自然科学基金(52271176);国家自然科学基金(52472200);国家学科创新引智计划(111计划)(D17007);河南省杰出外籍科学家工作室(GZS2022017);河南省重点研发项目(231111520500)

Dual-site confinement strategy tuning Fe-N-C electronic structure to enhance oxygen reduction performance in PEM fuel cells

Wenbo Shia, Kai Zhua, Xiaogang Fub, Chenhong Liua, Yang Yuana, Jialiang Pana, Qing Zhanga,*(), Zhengyu Baa,*()   

  1. aKey Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
    bState Key Laboratory of Solidification of Processing, Atomic Control & Catalysis Engineering Laboratory (ACCEL), School of Material Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
  • Received:2025-05-30 Accepted:2025-07-12 Online:2026-01-18 Published:2026-01-05
  • Contact: Qing Zhang, Zhengyu Ba
  • Supported by:
    National Natural Science Foundation of China(52271176);National Natural Science Foundation of China(52472200);111 Project(D17007);Henan Center for Outstanding Overseas Scientists(GZS2022017);Henan Province Key Research and Development Project(231111520500)

摘要:

电化学能源转换技术的核心在于高效实现化学能至电能的转化, 其中氧还原反应(ORR)作为质子交换膜燃料电池(PEMFCs)及金属-空气电池等器件的关键动力学瓶颈, 亟待高性能催化剂的开发. 尽管铂基催化剂因其优异的ORR活性与稳定性被视为基准, 但其高昂成本与资源稀缺性严重制约大规模商业化应用. 近年来, 原子级分散的过渡金属-氮-碳(M-N-C)材料, 尤其是铁-氮-碳(Fe-N-C)催化剂, 因其低成本与高理论活性成为最具潜力的替代体系. 然而, Fe-N-C催化剂在酸性介质中仍面临两大关键挑战: (1) ORR过程中生成的H2O2中间体与Fe活性位点触发芬顿反应, 产生高活性羟基自由基(•OH), 引发碳载体结构破坏及FeN₄活性中心降解; (2)碳基体在强酸、高电位工况下易发生电化学腐蚀, 导致Fe位点溶解, 催化稳定性急剧下降.

本研究针对单原子Fe-N-C催化剂在酸性ORR中普遍存在的活性不足、稳定性差的核心瓶颈问题, 提出了一种双位点限域合成策略, 通过原子级配位环境调控与碳基体结构优化的协同作用, 实现了催化剂活性与稳定性的双重提升. 以ZIF-8包覆的MnFe2O4纳米颗粒为前驱体, 在H2/N2混合气氛中经高温热解构建了Fe-Mn双原子协同的FeMn-N活性位点, 并同步形成高石墨化氮掺杂碳基体. 实验与理论计算共同揭示, Mn的引入通过电子转移效应显著调控Fe的电子结构, 优化d带中心位置, 增强Fe-N键结合能, 从而抑制Fe原子的溶出, 并通过优化*OH脱附能垒规避*OOH中间体形成, 优化ORR路径实现高效四电子转移机制, 有效抑制芬顿反应活性. 拉曼光谱与同步辐射X射线吸收精细结构表征证实, 稳定的Fe-N-Mn配位结构以及石墨化程度显著提升的碳基体, 增强了载体抗腐蚀能力. 电化学测试显示, FeMn-N-C催化剂在0.5 mol L-2 H2SO4中展现出0.885 V的初始半波电位(E1/2), 优于商业Pt/C (0.855 V), 经20000次循环伏安测试后半波电位仍保持0.79 V; 作为PEMFCs阴极时, 在80 °C, 2.0 bar背压条件下其峰值功率密度达899.9 mW cm-2, 经20000次方波循环后仍保持66.4%的初始性能, 较传统Fe-N-C催化剂稳定性明显提升.综上, 该策略通过原子级双金属协同与碳基体工程的多尺度调控, 为开发高性能、低成本酸性氧还原催化剂提供了新的思路.

关键词: 双原子催化剂, 电催化, 氧还原反应, 催化活性和稳定性, 质子交换膜燃料电池

Abstract:

Single atomic iron-nitrogen-carbon (Fe-N-C) have emerged as promising catalysts for the oxygen reduction reaction (ORR), however, the insufficient activity and stability hindered their application in proton exchange membrane fuel cells (PEMFCs). Simultaneously regulating the coordination environments and local carbon structures of atomic Fe-N sites is essential to boost Fe-N-C’s ORR performance. In this study, a dual-site confinement strategy is proposed to precisely incorporate Mn single atoms at adjacent Fe sites to form active and stable FeMn-N catalytic structure within a graphitic carbon matrix, which is achieved via heat treatment of MnFe2O4 nanoparticles embedded ZIF-8. Experimental and theoretical calculations demonstrate that the incorporation of Mn atoms could effectively modulate the electronic structure of Fe atoms, enhance Fe-N bond stability and reduce Fe site dissolution. Moreover, in-situ Raman and in-situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy spectra suggest that Mn doping could suppress Fenton reactions by optimizing the ORR pathway through facilitating *OH intermediate desorption and circumventing *OOH intermediate formation. The synthesized FeMn-N-C exhibits better catalytic activity than commercial Pt/C catalysts (E1/2 of 0.885 vs. 0.855 V) and maintains stable cycling operation over 20000 cycles with a small E1/2 gap of 95 mV. When applied in PEMFCs, FeMn-N-C achieves a high peak power density of 899.9 mW cm-2 and retains 66.4% of its initial performance after 20000 square-wave cycles, which is superior to Fe-N-C catalyst. This study provides an innovative design strategy for developing high-performance, long-lasting ORR catalysts for PEMFCs.

Key words: Dual-atom catalyst, Electrocatalysis, Oxygen reduction reaction, Catalytic activity and stability, Proton exchange membrane fuel cell