催化学报 ›› 2026, Vol. 80: 38-58.DOI: 10.1016/S1872-2067(25)64834-0
向家奇a, 陈立妙a, 陈善勇a,b,*(
), 刘又年a,*(
)
收稿日期:2025-06-20
接受日期:2025-08-06
出版日期:2026-01-05
发布日期:2026-01-05
通讯作者:
陈善勇,刘又年
基金资助:
Jiaqi Xianga, Limiao Chena, Shanyong Chena,b,*(
), You-Nian Liua,*(
)
Received:2025-06-20
Accepted:2025-08-06
Online:2026-01-05
Published:2026-01-05
Contact:
Shanyong Chen, You-Nian Liu
About author:Shanyong Chen obtained his Ph.D. degree from Nanjing University in 2020. He is currently an associate professor in the College of Chemistry and Chemical Engineering of Central South University. His research focuses on the design of efficient energy catalytic materials, the exploration of catalytic reaction mechanisms, and the development and application of new green catalytic processes and devices. Supported by:摘要:
近几十年来, 化石燃料的持续消耗导致了二氧化碳排放量增加, 加剧了以温室效应为代表的环境问题, 因此开发高效二氧化碳捕获和利用技术尤为迫切. 电化学二氧化碳还原反应已成为将二氧化碳转化为高附加值化学品的极具应用前景的策略. 早在上世纪六十年代, 研究人员就发现电解液中的碱阳离子对电化学二氧化碳还原反应起促进作用. 得益于先进表征技术的发展和在分子水平上对反应界面催化机理的深入理解, 最近研究深入揭示了碱阳离子在电化学二氧化碳还原反应中的关键作用, 包括增强催化反应活性和调节产物选择性. 尽管取得了这些进展, 但关于碱金属阳离子究竟如何影响电催化反应过程以及碱阳离子效应的关键决定因素仍然存在争议.
目前关于碱阳离子影响的研究大多集中在关联催化反应性能与定性光谱表征, 或理想化电极界面微环境和简化双电层的计算研究, 主要关注碱阳离子的浓度和类型等变量对电化学二氧化碳还原反应的影响, 而更深层次的碱阳离子的分布方式对界面物理化学性质、反应动力学和热力学的影响研究尚缺乏, 催化反应性能与碱阳离子之间的本质定性关系, 即碱阳离子效应的物理化学起源尚不明确. 因此, 本文首先总结了现代电双层理论的最新进展, 并阐明了碱阳离子在反应界面上的三种不同的分布方式, 对应于三种碱阳离子在界面的吸附模式, 包括静电吸附、特异性吸附和准特异性吸附, 并讨论了体系变量, 如离子半径、反应电位等对碱阳离子吸附模式的影响和不同吸附模式对电化学二氧化碳还原反应起特定作用的机制, 明确了碱阳离子的物理化学起源问题. 随后系统地总结了这些阳离子在不同电解质体系中作用的具体机制. 在碱性介质中, 碱阳离子可以促进C−C偶联反应, 实现乙烯、乙醇等高附加值产品的高产率和选择性. 在中性介质中, 碱阳离子可以调节界面的pH值、优化界面的氢键网络、促进电化学二氧化碳还原反应的动力学、稳定反应中间体的吸附和促进C−C偶联. 在酸性介质中, 碱阳离子主要调制界面电场、调控界面水的结构、抑制水合氢离子的迁移并对电化学二氧化碳还原反应动力学产生影响. 此外, 还总结了与碱阳离子类似的含氮有机阳离子等在调节电化学二氧化碳还原反应的作用, 阐述其在电化学二氧化碳还原反应中协助或代替碱阳离子的潜力.
最后, 基于碱阳离子效应的系统理解, 本文提出了碱阳离子效应的未来研究基本观点与展望, 包括阐明碱阳离子在所应用的电催化体系中的分布模式、利用原位光谱法揭示碱阳离子对界面性质的影响和探究碱阳离子在工业反应装置中的作用, 为下一代先进的电化学二氧化碳还原电解系统的合理设计提供重要参考.
向家奇, 陈立妙, 陈善勇, 刘又年. 电化学二氧化碳还原中的碱阳离子效应[J]. 催化学报, 2026, 80: 38-58.
Jiaqi Xiang, Limiao Chen, Shanyong Chen, You-Nian Liu. Alkali cation effects in electrochemical carbon dioxide reduction[J]. Chinese Journal of Catalysis, 2026, 80: 38-58.
Fig. 1. Schematic illustration of the EDL structure in the GCS model and the distribution of different adsorbed alkali cations. The white, red, blue and gray spheres represent hydrogen, oxygen, metal and carbon atoms, respectively.
Fig. 2. (a) 3D view of the proposed (2 × 2) ball model at ?850 mV (left) and density profiles of the four layers (α ? δ) on Pt(111) surface obtained from the fits (right). Pt atom, gray balls; Cs+ ions, blue balls; The red and pink balls represent the water molecules. Reprinted with permission [64]. Copyright 2018, American Chemical Society. (b) Schematic diagram of adsorption model for specific adsorption alkali cations on electrode surface. Reprinted with permission [70]. Copyright 2021, American Chemical Society. (c) Solvated surface structures on Pt(111) in 3 × 3 unit cell. White, H atom; Red, O atom; Green, Ba2+ ions; Purple, Na+ ions; Blue, Pt atom. Reprinted with permission [73]. Copyright 2014, Royal Society of Chemistry. (d) A schematic illustration of the interface structure at the negatively charged (left) and positively charged (right) surface. Alkali cations on positively charged surface have a quasispecific adsorption configuration. Reprinted with permission [68]. Copyright 2011, Elsevier. B.V.
| Catalyst | Electrolyte | FECO a (%) | FEHCOOH a (%) | FECH4 a (%) | FEC2H4a (%) | FEC2H5OH a (%) | Ref. |
|---|---|---|---|---|---|---|---|
| Cu | 1.0 mol L‒1 H3PO4 | <1 | <1 | <1 | <1 | —b | [ |
| 1.0 mol L‒1 H3PO4 + 3.0 mol L‒1 KCl | ~5 | ~7 | ~20 | ~10 | — | ||
| Cu | H3PO4 + 2 mmol L‒1 K+ (pH 2) | ~10 (C1) | ~2 (C2) | [ | |||
| H3PO4 + 0.2 mol L‒1 K+ (pH 2) | ~22 (C1) | ~10 (C2) | |||||
| CuO-derived Cu | 1.0 mol L‒1 KHCO3 | ~10 | — | ~1 | ~42 | — | [ |
| 1.0 mol L‒1 KHCO3 + 1.0 mol L‒1 CTAB | ~1 | — | ~1 | ~5 | — | ||
| SnO2/C | 0.1 mol L‒1 HOTf + 0.4 mol L‒1 LiOTf | ~5 | ~20 | — | — | — | [ |
| 0.1 mol L‒1 HOTf + 0.4 mol L‒1 CsOTf | ~4 | ~85 | — | — | — | ||
| NiPc/CNT | H2SO4 + 3.0 mol L‒1 KCl (pH 1) | 65.9 | — | — | — | — | [ |
| NiPc/CNT-SO3H | H2SO4 + 3.0 mol L‒1 KCl (pH 1) | 92.7 | — | — | — | — | |
| CuAg/GDL | 0.5 mol L‒1 KOH | ~30 | — | ~5.5 | ~22 | — | [ |
| 1.0 mol L‒1 KOH | ~25 | — | ~7.5 | ~30 | — | ||
| 2.0 mol L‒1 KOH | ~10 | — | ~10 | ~20 | — | ||
| Ag | 0.1 mol L‒1 LiHCO3 | 55.8 | — | — | — | — | [ |
| 0.1 mol L‒1 KHCO3 | 85.4 | — | — | — | — | ||
| 0.1 mol L‒1 CsHCO3 | 90.2 | — | — | — | — | ||
| Cu | 0.1 mol L‒1 LiHCO3 | — | — | 11.1 | 6.7 | ~4 | |
| 0.1 mol L‒1 KHCO3 | — | — | 13.5 | 31.5 | 9.0 | ||
| 0.1 mol L‒1 CsHCO3 | — | — | 12.9 | 39.6 | 9.7 | ||
| Cu | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | ~10 | — | — | [ |
| Cu + 18-Crown-6 (1:1) | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | ~25 | — | — | |
| Cu + 18-Crown-6 (1:3) | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | 51.2 | — | — | |
| IL−Ni−NC | H2SO4 (pH 1.7) | ~67 | — | — | — | — | [ |
| H2SO4 + 1.0 mol L‒1 K+ (pH 1.7) | ~90 | — | — | — | — | ||
| Ag | H2SO4 (pH 1.7) | ~10 | — | — | — | — | |
| H2SO4 + 1.0 mol L‒1 K+ (pH 1.7) | ~30 | — | — | — | — | ||
| Au | 0.1 mol L‒1 Li2SO4 (pH 3) | ~47 | — | — | — | — | [ |
| 0.1 mol L‒1 K2SO4 (pH 3) | ~70 | — | — | — | — | ||
| Ag | 0.1 mol L‒1 H2SO4 + 0.2 mol L‒1 K2SO4 | ~60 | — | — | — | — | [ |
| Ag + PSS | 0.1 mol L‒1 H2SO4 + 0.2 mol L‒1 K2SO4 | ~94 | — | — | — | — | |
| NiPc-OMe MDE | 0.1 H2SO4 | 0 | — | — | — | — | [ |
| 0.1 mol L‒1 H2SO4 + 0.1 mol L‒1 K2SO4 | ~80 | — | — | — | — | ||
| 0.1 mol L‒1 H2SO4 + 0.4 mol L‒1 K2SO4 | ~100 | — | — | — | — | ||
Table 1 The comparison of the effects of alkali cations on the catalytic eCO2RR performance.
| Catalyst | Electrolyte | FECO a (%) | FEHCOOH a (%) | FECH4 a (%) | FEC2H4a (%) | FEC2H5OH a (%) | Ref. |
|---|---|---|---|---|---|---|---|
| Cu | 1.0 mol L‒1 H3PO4 | <1 | <1 | <1 | <1 | —b | [ |
| 1.0 mol L‒1 H3PO4 + 3.0 mol L‒1 KCl | ~5 | ~7 | ~20 | ~10 | — | ||
| Cu | H3PO4 + 2 mmol L‒1 K+ (pH 2) | ~10 (C1) | ~2 (C2) | [ | |||
| H3PO4 + 0.2 mol L‒1 K+ (pH 2) | ~22 (C1) | ~10 (C2) | |||||
| CuO-derived Cu | 1.0 mol L‒1 KHCO3 | ~10 | — | ~1 | ~42 | — | [ |
| 1.0 mol L‒1 KHCO3 + 1.0 mol L‒1 CTAB | ~1 | — | ~1 | ~5 | — | ||
| SnO2/C | 0.1 mol L‒1 HOTf + 0.4 mol L‒1 LiOTf | ~5 | ~20 | — | — | — | [ |
| 0.1 mol L‒1 HOTf + 0.4 mol L‒1 CsOTf | ~4 | ~85 | — | — | — | ||
| NiPc/CNT | H2SO4 + 3.0 mol L‒1 KCl (pH 1) | 65.9 | — | — | — | — | [ |
| NiPc/CNT-SO3H | H2SO4 + 3.0 mol L‒1 KCl (pH 1) | 92.7 | — | — | — | — | |
| CuAg/GDL | 0.5 mol L‒1 KOH | ~30 | — | ~5.5 | ~22 | — | [ |
| 1.0 mol L‒1 KOH | ~25 | — | ~7.5 | ~30 | — | ||
| 2.0 mol L‒1 KOH | ~10 | — | ~10 | ~20 | — | ||
| Ag | 0.1 mol L‒1 LiHCO3 | 55.8 | — | — | — | — | [ |
| 0.1 mol L‒1 KHCO3 | 85.4 | — | — | — | — | ||
| 0.1 mol L‒1 CsHCO3 | 90.2 | — | — | — | — | ||
| Cu | 0.1 mol L‒1 LiHCO3 | — | — | 11.1 | 6.7 | ~4 | |
| 0.1 mol L‒1 KHCO3 | — | — | 13.5 | 31.5 | 9.0 | ||
| 0.1 mol L‒1 CsHCO3 | — | — | 12.9 | 39.6 | 9.7 | ||
| Cu | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | ~10 | — | — | [ |
| Cu + 18-Crown-6 (1:1) | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | ~25 | — | — | |
| Cu + 18-Crown-6 (1:3) | H2SO4 + 0.5 mol L‒1 K2SO4 (pH 2) | — | — | 51.2 | — | — | |
| IL−Ni−NC | H2SO4 (pH 1.7) | ~67 | — | — | — | — | [ |
| H2SO4 + 1.0 mol L‒1 K+ (pH 1.7) | ~90 | — | — | — | — | ||
| Ag | H2SO4 (pH 1.7) | ~10 | — | — | — | — | |
| H2SO4 + 1.0 mol L‒1 K+ (pH 1.7) | ~30 | — | — | — | — | ||
| Au | 0.1 mol L‒1 Li2SO4 (pH 3) | ~47 | — | — | — | — | [ |
| 0.1 mol L‒1 K2SO4 (pH 3) | ~70 | — | — | — | — | ||
| Ag | 0.1 mol L‒1 H2SO4 + 0.2 mol L‒1 K2SO4 | ~60 | — | — | — | — | [ |
| Ag + PSS | 0.1 mol L‒1 H2SO4 + 0.2 mol L‒1 K2SO4 | ~94 | — | — | — | — | |
| NiPc-OMe MDE | 0.1 H2SO4 | 0 | — | — | — | — | [ |
| 0.1 mol L‒1 H2SO4 + 0.1 mol L‒1 K2SO4 | ~80 | — | — | — | — | ||
| 0.1 mol L‒1 H2SO4 + 0.4 mol L‒1 K2SO4 | ~100 | — | — | — | — | ||
Fig. 3. (a) FE distribution of the major products H2, C2H4 and CO during operation at constant voltage (3.2 V) as a function of anolyte concentration. Reprinted with permission [92]. Copyright 2023, Springer Nature. (b) Structures and energetics for the free CO2 reactant, transition state, and product *CO2- during adsorption in 1 mol L?1 KOH (left) and 2 mol L?1 KOH (right) solutions on Au(111). The solid black curve corresponds to free and linear reactant CO2 in solution. The solid red and green curves correspond to product *CO2- energies taken with respect to the reference state in 1 mol L?1 KOH and 2 mol L?1 KOH, respectively. The dotted red and green curves correspond to the energies of the transition state taken with respect to the reference state for the initial electron transfer in 1 mol L?1 KOH and 2 mol L?1 KOH solutions at the Au(111) cathode, respectively. Reprinted with permission [80]. Copyright 2023, American Chemical Society. FECH4 (c) and FEC2H4 (d) with different concentration of K+ at ?0.8 V. (e) ΔECOad contract with the concentration of interfacial K+. Reprinted with permission [83]. Copyright 2025, Elsevier. (f) Cation effects on the standard free energies of two elementary steps. (g,h) Influence of cation concentration on the elementary steps of the CORR. Reprinted with permission [53]. Copyright 2024, Springer Nature.
Fig. 4. (a) pKa of hydrolysis of hydrated Li+ and Cs+ on the surface of Ag electrode and its effect on the distribution of pH and CO2 concentration. Reprinted with permission [84]. Copyright 2016, American Chemical Society. (b) Interaction between H3O+ and alkali metal cations. H3O+ and K+ are highlighted and shown as spheres where O is represented in red, H in white, and K in purple. Reprinted with permission [94]. Copyright 2024, Springer Nature. (c) Profile of βDFT with reference to EDL width from different transition state models of *CO2- formation with explicit K+ and H2O. The dash black line represents βexp = 0.44 on Au(111) surface in 0.1 mol L?1 KHCO3. The blue solid line is the profile of βDFT for the simple *CO2- model. The red solid and dashed lines represent the profiles of βDFT for the coadsorbed cation models, respectively. The purple solid and dashed lines represent the profiles of βDFT for the coordinated cation model, respectively. (d) β derived from Tafel plots of eCO2RR to CO as a function of cation identity. Reprinted with permission [46]. Copyright 2025, American Association for the Advancement of Science. (e) Free energy profiles and representative structures at initial state (IS), transition state (TS), and final state (FS) for CO2 adsorption with different alkali cations (Li+, Na+, K+ and Cs+). Reprinted with permission [94]. Copyright 2024, Springer Nature. (f) The schematic diagram of reaction mechanism changes of eCO2RR on Ni?N4 catalyst with and without K+. Reprinted with permission [97]. Copyright 2024, Springer Nature.
Fig. 5. (a) Comparison of simulated XANES spectra of Ni?N4 and Ni-N4-COOH. (b) Normalized in-situ nickel K-edge XANES spectra of Ni-N4-HM in CO2 saturated 1 mol L?1 KHCO3 buffer at different applied potentials. (c) The radial distribution function g(r) and the corresponding integrated coordination number of the O?K+ pair in an equilibrated AIMD trajectory. (d) Evolution of the Ni?C distance, O?C?O angle, and K-O (CO2) distance before and after the K+ ion left the active site. Reprinted with permission [97]. Copyright 2024, Springer Nature. (e) Different products (C2H4, C2H5OH, CH4 and CO) as a function of applied potential for O2-plasma-activated Cu sample measured in different electrolytes after 1 h of CO2RR. Reprinted with permission [77]. Copyright 2018, American Chemical Society.
Fig. 6. (a) Schematics of the migration of cations toward the Cu surface. Reprinted with permission [51]. Copyright 2024, American Chemical Society. (b) Schematic representation of the integrated mechanism elucidating the cation-dependent C2+ selectivity. Reprinted with permission [99]. Copyright 2024, American Chemical Society. (c) Illustrations of the different mechanistic proposals of cation effects on enhancing C?C coupling. Reprinted with permission [52]. Copyright 2024, American Chemical Society.
Fig. 7. Profiles of potential (a) and electric field strength (b) with and without K+. (c) Schemata of double layer near cathode. Grey, red, white, blue, yellow and orange spheres represent C, O, H, K, F and S atoms, respectively. Orange arrows represent electric field (E) generated by the cathode, and blue arrows represent E generated by cations at OHP. μ represents the dipole moment of the adsorbed CO2 intermediate. Reprinted with permission [69]. Copyright 2022, Springer Nature. (d) Simulated electric field strength over the distance from outer Helmholtz plane (OHP). In situ Raman spectra of (e) Cu and (f) crown ether-modified Cu catalysts under applied potentials. Reprinted with permission [85]. Copyright 2023, Wiley-VCH.
Fig. 8. (a) Schematics of three water structures, including 4H?H2O, 2H?H2O, and K?H2O. Reprinted with permission [106]. Copyright 2024, American Chemical Society. (b) The variation trend of three types of water populations. (c) The experimental frequencies of the O?H stretching mode of different interfacial water. Reprinted with permission [78]. Copyright 2025, American Institute of Chemical Engineers. (d) In-situ ATR-SEIRAS spectra of IL-Ni-NC in the 0.05 mol L?1 K2SO4 + H2SO4 (pH 1.7, 2.1, and 4.0). (e) Water structure ratio of pH 1.7 (up) and pH 4.0 (down) with Fig. 8(d). Reprinted with permission [86]. Copyright 2025, Elsevier. (f) The dependence of band intensity of adsorbed *CO2 on cation concentration. (g) Cation concentration (c)-dependent partial current of CO from the eCO2RR. (h) Schematic presentation of water network around Li+ and Na+ and its interactions with adsorbed CO2. Reprinted with permission [45]. Copyright 2024, Springer Nature.
Fig. 9. (a) Effects of physically adsorbed K+ on the migration of H+. Reprinted with permission [107]. Copyright 2023, Springer Nature. (b) Schemata of hydrated K+ inhibits the migration of H+. (c) ATR-SEIRAS spectra of *COatop region as a function of potential and the calculated Stark tuning slopes for 2-200 mmol L-1 K+. (d) eCO2RR electrolysis product distribution for different K+ concentration in H3PO4 (pH = 2). (e) Interfacial pH as a function of time for different K+ concentration. (f) Time-dependent *CO band intensity for Fig. 9(e). Reprinted with permission [48]. Copyright 2024, American Chemical Society.
Fig. 10. (a) Schematic representation of the interactions of the cations with the negatively charged *CO2- intermediates together with the reaction mechanism. Reprinted with permission [108]. Copyright 2021, Springer Nature. (b) Reaction energy barriers of *CO dimerization on different slabs. IS, initial state. TS, transition state. FS, final state. Reprinted with permission [109]. Copyright 2022, Springer Nature. (c) Representative snapshots from MD simulations showing different solvation structures near the Li+ and the adsorbed *CHO intermediate. Reprinted with permission [47]. Copyright 2024, Springer Nature. (d) Time-dependent product distributions and partial current densities of sputtered Cu at ?1.3 VRHE. (e) Cs+ concentration-dependent product distributions and partial current densities of sputtered Cu at ?1.2 VRHE. (f) ATR-SEIRAS spectra of sputtered Cu at various applied potentials in CO2-saturated 0.5 mol L-1 M2SO4 (M = Li, K, and Cs). Reprinted with permission [110]. Copyright 2025, American Chemical Society.
Fig. 11. (a) Possible *COads coupling mechanism on Cu(100). Reprinted with permission [111]. Copyright 2021, PNAS license. (b) Schematic illustration of the interpretation of spectra. In the absence of K+, hydrated methyl4N+ accumulates in the EDL with decreasing potential. In the presence of K+, methyl4N+ads is displaced by Kads. Kads is indicated by grey patterned circles. Blue and orange arrows indicate decreasing electrode potential (U). Reprinted with permission [50]. Copyright 2022, Springer Nature. (c) Schematic of c-PDDA decorated catalyst. The blue lines represent the polymer chains, and the short red lines represent the ?(CH2)6? cross-linkers. Reprinted with permission [107]. Copyright 2023, Springer Nature. (d) MD model predictions of atomic configurations for the Cu/CG systems. Red, grey, yellow, green, purple, blue and white balls represent O, C, Cu, Cl, K, N and H, respectively. Reprinted with permission [112]. Copyright 2023, Springer Nature.
|
| [1] | 马毅, 葛欢, 章勇, 简宁, 唐嘉陵, 胡宗坤, 于静, 李灿煌, 李露明, 李军山. 基于Ag与NiFe-LDH协同作用实现电催化PET碱性水解产物选择性制备甲酸盐与乙醇酸盐[J]. 催化学报, 2026, 80(1): 282-292. |
| [2] | 杜斌杰, 肖宇航, 谭骁鸿, 何炜东, 郭莹莹, 崔浩, 王成新. 双相Cu-Co/CoO异质结通过中间体传递实现高效串联硝酸盐电还原[J]. 催化学报, 2026, 80(1): 270-281. |
| [3] | 时文博, 朱凯, 付小刚, 刘陈红, 原洋, 潘家梁, 张庆, 白正宇. 双位点限域策略调控Fe-N-C电子结构提升质子交换膜燃料电池氧还原性能[J]. 催化学报, 2026, 80(1): 293-303. |
| [4] | 熊菊霞, 马昊, 董盈君, 周翔基, 黎琳波, 孙源淼, 张小龙, 成会明. 利用聚苯胺作为电子泵提升铋基电催化CO2向甲酸盐转化[J]. 催化学报, 2026, 80(1): 237-247. |
| [5] | 肖丽媛, 王振旅, 管景奇. 多核金属有机框架材料在电催化中的研究进展[J]. 催化学报, 2026, 80(1): 59-91. |
| [6] | 门亚娜, 矫宇州, 郑妍星, 王晓晏, 陈胜利, 李朋. 质子型离子液体调控分子铁催化剂氧还原活性的pH依赖性及其电化学界面起源[J]. 催化学报, 2026, 80(1): 258-269. |
| [7] | 杨丹, 崔翔, 徐周, 颜前, 吴雅婷, 周春梅, 戴翼虎, 万晓月, 靳玉广, 杨艳辉. 配体保护的精确结构镍纳米团簇高效电催化甘油氧化制甲酸[J]. 催化学报, 2025, 76(9): 185-197. |
| [8] | 孙燕, 张蕾. 双功能核壳Cu2O@NiFe2O4 Z型纳米反应器光辅助电催化同步氧化-还原合成鸟粪石[J]. 催化学报, 2025, 76(9): 230-241. |
| [9] | 朱鸿睿, 王希伦, 赵娟涓, 尹梦晗, 徐慧民, 李高仁. 基于Ni单原子/P,N掺杂非晶态NiFe2O4作为阳极和Ag@CuO/Cu2O纳米立方体作为阴极组成的高效光电化学系统用于微塑料氧化和二氧化碳还原[J]. 催化学报, 2025, 76(9): 159-172. |
| [10] | 翁应龙, 张建平, 张坤, 路亦通, 黄婷婷, 康英博, 韩晓彤, 邱介山. 先进电催化功能碳基材料研究新进展[J]. 催化学报, 2025, 76(9): 10-36. |
| [11] | 李原锐, 张晓磊, 李彤, 胡程, 陈芳, 蔡豪, 黄洪伟. 少层氧空位Bi2O2(OH)NO3用于水和空气双通道压电催化产H2O2[J]. 催化学报, 2025, 75(8): 105-114. |
| [12] | 张冰洁, 王春燕, 杨甫林, 王书莉, 冯立纲. 功函数差异自发诱导Ir/MoSe2内置电场催化高效PEM水电解[J]. 催化学报, 2025, 75(8): 95-104. |
| [13] | 潘嘉宁, 李敏, 王瑛琦, 谢文富, 张天雨, 王强. 先进的光电催化耦合反应[J]. 催化学报, 2025, 73(6): 99-145. |
| [14] | 陈洁, 李静, 魏子栋. 电催化乙二醇选择性氧化制备乙醇酸的最新进展[J]. 催化学报, 2025, 73(6): 79-98. |
| [15] | 胡呈弘, 张悦, 张仪, 黄沁彤, 沈葵, 陈立宇, 李映伟. Sn电子调节器增强Fe位点电催化CO2还原性能[J]. 催化学报, 2025, 72(5): 222-229. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||