催化学报 ›› 2025, Vol. 73: 99-145.DOI: 10.1016/S1872-2067(25)64697-3

• 综述 • 上一篇    下一篇

先进的光电催化耦合反应

潘嘉宁a, 李敏a(), 王瑛琦a, 谢文富a, 张天雨b, 王强a,b()   

  1. a北京林业大学环境科学与工程学院, 水体污染源控制技术北京市重点实验室, 水污染源头控制与生态修复工程研究中心, 北京 100083
    b北京林业大学森林资源高效生产国家重点实验室, 北京 100083
  • 收稿日期:2025-01-07 接受日期:2025-03-18 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: limin2022@bjfu.edu.cn (李敏),qiangwang@bjfu.edu.cn (王强).
  • 基金资助:
    国家自然科学基金(52225003);国家自然科学基金(52300125);国家自然科学基金(52470113);北京林业大学5·5工程研究创新团队项目(BLRC2023B04)

Advanced photoelectrocatalytic coupling reactions

Jianing Pana, Min Lia(), Yingqi Wanga, Wenfu Xiea, Tianyu Zhangb, Qiang Wanga,b()   

  1. aBeijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
    bState Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
  • Received:2025-01-07 Accepted:2025-03-18 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: limin2022@bjfu.edu.cn (M. Li),qiangwang@bjfu.edu.cn (Q. Wang).
  • About author:Dr. Min Li received her B.S. in 2015 and Ph.D degree in 2020 from School of Materials Science and Technology, China University of Geosciences (Beijing). She carried out postdoctoral research at Department of Chemistry, Tsinghua University from 2020 to 2022. Since the end of 2022, she joined the faculty of College of Environmental Science and Engineering, Beijing Forestry University. Her current research mainly focuses on the design and modification of environmental functional materials and photo/photoelectro-catalytic CO2 conversion.
    Professor Qiang Wang received his BSc (2003) and MSc (2005) from Harbin Institute of Technology in China, and PhD (2009) from POSTECH in South Korea. In 2009-2011, he worked as a research fellow at the Institute of Chemical and Engineering Sciences under ASTAR, Singapore. In 2011-2012, he worked as a postdoctoral associate at the Department of Chemistry, University of Oxford. Since 2012, he holds a full professor position at the College of Environmental Science and Engineering, Beijing Forestry University. He serves as the section editor (capture, storage, and chemical conversion of carbon dioxide) of the Journal of Energy Chemistry and the editorial boards of several scientific journals. His current research interests include environmental functional nanomaterials for air pollution control and CO2 capture and utilizations (CCU).
  • Supported by:
    National Natural Science Foundation of China(52225003);National Natural Science Foundation of China(52300125);National Natural Science Foundation of China(52470113);5·5 Engineering Research & Innovation Team Project of Beijing Forestry University(BLRC2023B04)

摘要:

光电催化(PEC)作为一种新兴的技术, 在多种氧化还原反应中展现出广泛的应用前景, 尤其在能源转化和环境修复领域具有巨大的潜力. 然而, 传统的PEC反应主要在阳极进行析氧反应, 受限于较高的热力学能垒和缓慢的动力学过程, 导致能量消耗过大. 此外, 析出的氧气经济价值有限, 进一步制约了PEC技术的实际应用. 为了克服这一瓶颈, 研究人员提出了先进的阴极−阳极耦合反应系统, 通过用较低电位、具有较高经济价值的氧化反应代替传统的析氧反应, 显著提高能量转化效率, 同时合成高价值的化学品, 实现能量利用的优化, 并有效降低环境污染. 更重要的是, 通过合理设计和优化光电极材料, 该系统可以在光照下产生足够的光电压, 以满足整体反应的热力学和动力学需求. 此外, 通过精准调控电压, 实现阴极和阳极的电流密度匹配, 从而在无偏压条件下驱动耦合反应的高效进行.

本综述总结了PEC耦合反应机理, 并与其它光驱动催化反应体系(如光伏、光热、光酶催化)进行了对比分析. 详细归纳了光电耦合反应体系中光阴极与光阳极催化剂的设计策略及其合成方法, 进一步从组分调控(单原子、双原子、高熵合金与高熵氧化物)、结构调控(限域效应、动态缺陷调控)、异质结构筑(范德华异质结、电子极化异质结)、电子轨道调控(d轨道调控、电子自旋极化调控)、微环境调控(表面修饰、pH调控、极化电场调控)等方面探讨了先进的催化剂改性策略. 重点介绍了PEC耦合系统的最新进展, 包括光阴极CO2还原、硝酸盐还原、氧还原、酶活化与光阳极有机氧化、生物质氧化和污染物降解等反应的耦合. 此外, 归纳了当前用于阐明反应机理的先进原位表征技术, 如原位X射线吸收精细结构、拉曼、红外、电子顺磁共振、X射线衍射、X射线光电子能谱和电化学质谱. 最后, 探讨了光电极材料设计、光电催化反应系统优化及大规模应用所面临的挑战, 并对PEC耦合系统的未来发展进行了展望.

本综述强调了PEC耦合系统在提升能源利用效率、降低反应能耗及促进绿色化学转化方面的巨大潜力, 为未来此类体系的合理设计提供了重要的研究思路和技术指导.

关键词: 光电催化, 耦合反应, 光阳极, 光阴极

Abstract:

Photoelectrocatalysis (PEC) is extensively applied in diverse redox reactions. However, the traditional oxygen evolution reaction (OER) occurring at the (photo)anode is hindered by high thermodynamic demands and sluggish kinetics, resulting in excessive energy consumption and limited economic value of the O2 produced, thereby impeding the practical application of PEC reactions. To overcome these limitations, advanced anodic-cathodic coupling systems, as an emerging energy conversion technology, have garnered significant research interest. These systems substitute OER with lower potential, valuable oxidation reactions, significantly enhancing energy conversion efficiency, yielding high-value chemicals, while reducing energy consumption and environmental pollution. More importantly, by designing and optimizing photoelectrodes to generate sufficient photovoltage under illumination, meeting the thermodynamic and kinetic potential requirements of the reactions, and by tuning the voltage to match the current densities of the cathode and anode, coupling reactions can be achieved under bias-free conditions. In this review, we provide an overview of the mechanisms of PEC coupling reactions and summarize photoelectrode catalysts along with their synthesis methods. We further explore advanced catalyst modification strategies and highlight the latest development in advanced PEC coupling systems, including photocathodic CO2 reduction, nitrate reduction, oxygen reduction, enzyme activation, coupled with photoanodic organic oxidation, biomass oxidation, and pollutant degradation. Additionally, advanced in situ characterization techniques for elucidating reaction mechanisms are discussed. Finally, we propose the challenges in catalyst design, reaction systems, and large-scale applications, while offering future perspectives for PEC coupling system. This work underscores the tremendous potential of PEC coupling systems in energy conversion and environmental remediation, and provides valuable insights for the future design of such coupling systems.

Key words: Photoelectrocatalysis, Coupling reaction, (Photo)cathode, (Photo)anode