催化学报 ›› 2025, Vol. 73: 99-145.DOI: 10.1016/S1872-2067(25)64697-3
潘嘉宁a, 李敏a(), 王瑛琦a, 谢文富a, 张天雨b, 王强a,b(
)
收稿日期:
2025-01-07
接受日期:
2025-03-18
出版日期:
2025-06-18
发布日期:
2025-06-12
通讯作者:
*电子信箱: limin2022@bjfu.edu.cn (李敏),qiangwang@bjfu.edu.cn (王强).
基金资助:
Jianing Pana, Min Lia(), Yingqi Wanga, Wenfu Xiea, Tianyu Zhangb, Qiang Wanga,b(
)
Received:
2025-01-07
Accepted:
2025-03-18
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: limin2022@bjfu.edu.cn (M. Li),qiangwang@bjfu.edu.cn (Q. Wang).
About author:
Dr. Min Li received her B.S. in 2015 and Ph.D degree in 2020 from School of Materials Science and Technology, China University of Geosciences (Beijing). She carried out postdoctoral research at Department of Chemistry, Tsinghua University from 2020 to 2022. Since the end of 2022, she joined the faculty of College of Environmental Science and Engineering, Beijing Forestry University. Her current research mainly focuses on the design and modification of environmental functional materials and photo/photoelectro-catalytic CO2 conversion.Supported by:
摘要:
光电催化(PEC)作为一种新兴的技术, 在多种氧化还原反应中展现出广泛的应用前景, 尤其在能源转化和环境修复领域具有巨大的潜力. 然而, 传统的PEC反应主要在阳极进行析氧反应, 受限于较高的热力学能垒和缓慢的动力学过程, 导致能量消耗过大. 此外, 析出的氧气经济价值有限, 进一步制约了PEC技术的实际应用. 为了克服这一瓶颈, 研究人员提出了先进的阴极−阳极耦合反应系统, 通过用较低电位、具有较高经济价值的氧化反应代替传统的析氧反应, 显著提高能量转化效率, 同时合成高价值的化学品, 实现能量利用的优化, 并有效降低环境污染. 更重要的是, 通过合理设计和优化光电极材料, 该系统可以在光照下产生足够的光电压, 以满足整体反应的热力学和动力学需求. 此外, 通过精准调控电压, 实现阴极和阳极的电流密度匹配, 从而在无偏压条件下驱动耦合反应的高效进行.
本综述总结了PEC耦合反应机理, 并与其它光驱动催化反应体系(如光伏、光热、光酶催化)进行了对比分析. 详细归纳了光电耦合反应体系中光阴极与光阳极催化剂的设计策略及其合成方法, 进一步从组分调控(单原子、双原子、高熵合金与高熵氧化物)、结构调控(限域效应、动态缺陷调控)、异质结构筑(范德华异质结、电子极化异质结)、电子轨道调控(d轨道调控、电子自旋极化调控)、微环境调控(表面修饰、pH调控、极化电场调控)等方面探讨了先进的催化剂改性策略. 重点介绍了PEC耦合系统的最新进展, 包括光阴极CO2还原、硝酸盐还原、氧还原、酶活化与光阳极有机氧化、生物质氧化和污染物降解等反应的耦合. 此外, 归纳了当前用于阐明反应机理的先进原位表征技术, 如原位X射线吸收精细结构、拉曼、红外、电子顺磁共振、X射线衍射、X射线光电子能谱和电化学质谱. 最后, 探讨了光电极材料设计、光电催化反应系统优化及大规模应用所面临的挑战, 并对PEC耦合系统的未来发展进行了展望.
本综述强调了PEC耦合系统在提升能源利用效率、降低反应能耗及促进绿色化学转化方面的巨大潜力, 为未来此类体系的合理设计提供了重要的研究思路和技术指导.
潘嘉宁, 李敏, 王瑛琦, 谢文富, 张天雨, 王强. 先进的光电催化耦合反应[J]. 催化学报, 2025, 73: 99-145.
Jianing Pan, Min Li, Yingqi Wang, Wenfu Xie, Tianyu Zhang, Qiang Wang. Advanced photoelectrocatalytic coupling reactions[J]. Chinese Journal of Catalysis, 2025, 73: 99-145.
Fig. 3. Schematic diagrams of PEC systems. (a) bias-assisted photoanode PEC cell. (b) bias-assisted photocathode PEC cell. (c) bias-free tandem PEC cell. (d) The bandgaps and band positions of p-type and n-type semiconductors. Reprinted with permission from Ref. [33]. Copyright 2025, Royal Society of Chemistry.
Fig. 4. (a) The illustration to prepare In2S3/MnIn2S4 catalyst. Reprinted with permission from Ref. [82]. Copyright 2024, Elsevier B.V. (b) Detailed prepared diagram for NCDs/Co3O4/Ti mesh photocathode. Reprinted with permission from Ref. [85]. Copyright 2023, Elsevier B.V. (c) Schematic illustration for the synthesis of the b-TiO2-x nanocones photoanode. Reprinted with permission from Ref. [86]. Copyright 2024, Elsevier B.V.
Fig. 5. (a) Schematic diagram of coating. (b) Schematic diagram of impregnation. (c) Schematic illustration for the synthesis of the Pt/TiO2/SiNW photoanode.
Fig. 7. (a) Schematic diagram of the synthesis of Ni-SAC by the confinement synthesis strategy. (b) HAADF-STEM images of Ni-SAC sample. (c) Mechanism diagram. Reprinted with permission from Ref. [103]. Copyright 2024, Springer Nature Limited. (d) HAADF-STEM image of FeSn-C2N, showing the dual atoms (yellow ellipse) and single atom (blue circle). (e) The dimer structure of active FeSn dual atom sites derived from the EXAFS result. (f) Gibbs free energy of ORR intermediates absorbed on FeSn-C2N, Fe-C2N, and Sn-C2N. Reprinted with permission from Ref. [106]. Copyright 2024, American Chemical Society.
Fig. 8. (a) FE-SEM image of the MnFeCoNiCu HEA. (b) Bader charge analysis of the MnFeCoNiCu HEA. (c) Electron density of the MnFeCoNiCu HEA. Reprinted with permission from Ref. [111]. Copyright 2025, Wiley-VCH. (d) TEM of ZnFeNiCuCoRu-O. (e) i-t test of ZnFeNiCuCoRu-O||Pt/C for overall water splitting. Reprinted with permission from Ref. [112]. Copyright 2023, Wiley-VCH.
Fig. 9. (a?c) HAADF-STEM images. (d) Energy difference between the β-C association intermediate and the β-pentacyclic association intermediate. Reprinted with permission from Ref. [116]. Copyright 2024, American Chemical Society. (e) EPR spectra of the samples. (f) Formation energy of oxygen vacancy over ZO-OV, CZO-OV, and CZO-OV-adding electrons. Reprinted with permission from Ref. [119]. Copyright 2024, National Academy of Sciences.
Fig. 10. (a) HRTEM images of 3CoPc/0.6P-WS2. (b) The model of 3CoPc/0.6P-WS2 with side view and top view. (c) Photocatalytic stability [122]. Copyright 2023, Wiley-VCH. (d) HRTEM image of PtSe2/PtCo heterojunctions with the inset FFT pattern of PtSe2/PtCo heterojunctions. (e) Charge density difference plot at the PtSe2/PtCo interface; The yellow and cyan regions represent electron aggregation and electron depletion respectively. (f) ΔGH* diagram for HER [124]. Copyright 2024, Wiley-VCH.
Fig. 11. (a) d-band center and G OH*. Computed projected density of states of Fe5N mC (b) and Fe5Cu N mC (c) after OH* adsorption [127]. Copyright 2023, Wiley-VCH. (d) Scheme depicting the synthesis of Co3O4 with Co vacancies. (e) Co L-edge XANES of Co3O4 and Co3?xO4 samples. (f) Calculated free energy diagrams of photoreduction of CO2 to CO on Co3O4 and Co3?xO4 with and without consideration of spin polarization in the calculation [130]. Copyright 2024, American Chemical Society.
Fig. 12. (a) With CTAB. Interfacial water molecules are repelled away from electrode-electrolyte interface, which favors racemates generation. Production distribution over carbon paper (b) and CTAB-modified carbon paper (c) [135]. Copyright 2023, Springer Nature Limited. (d) Schematic illustration for fabrication of La-Cu HS. (e) From left to right are the pH distribution in electrolyte near surface of solid sphere, hollow sphere, and within channels of hollow sphere at ?900 mA [137]. Copyright 2024, Springer Nature Limited. (f) HAADF-STEM images of BTOPAu. (g) Electric hysteresis loops of BTO, BTOP, BTOAu3, and BTOPAu (at 10 kV·cm?1) [139]. Copyright 2024, Springer Nature Limited.
Fig. 13. (A): (a) The schematic illustration of photothermal-assisted co-electrolysis of CO2 and methanol; (b) FE for CO at different applied potentials of Ni-Bpy-COF and Ni-2CBpy2+-COF; (c) Faradaic efficiency of MOR product at different applied potentials for Ni-Bpy-COF and Ni-2CBpy2+-COF; (d) Cycling tests of temperature changes of Ni-2CBpy2+-COF and Ni-Bpy-COF under irradiation (insert images are the photothermal images of Ni-2CBpy2+-COF). (e) jCO as a function of the cell voltage; (f) Radar chart of the performances for co-electrolysis of CO2 and methanol in two-electrode system [83]. Copyright 2022, Wiley-VCH. (B): (a) Schematic representation of a fully assembled two-electrode PEC cell; (b) LSV of a three-electrode cell that comprised a mTiO2|STEMPO/DPP-CA working electrode and a cyclic voltammogram of a three-electrode cell that comprised a mITO|FDH working electrode with a Ag/AgCl(KClsat) reference and Pt mesh counter electrodes; (c) Comparison of mTiO2|STEMPO/dye electrodes for 4-MBA oxidation; (d) CPPE of the two-electrode cell at an applied voltage of 0?V [148]. Copyright 2022, Springer Nature Limited.
Fig. 14. (A): (a) LSV curves of Si,GaN/Si and Bi/GaN/Si at light and dark; (b) FEs and jHCOO? at varied applied potentials over Bi/GaN/Si; (c) LSV curves of α-Fe2O3 with different co-catalysts; (d) FEs and TOFs for HCOO? production at varied potentials over NiOOH/ α-Fe2O3; (e) LSV curves of the tandem PEC cell with and without biomass addition; (f) Comparisons of the bias required to achieve varied current densities with and without biomass addition [73]. Copyright 2023, Springer Nature Limited. (B): (a) Representative photocurrent density versus bias for SiNW photocathodes prepared with (biotic) and without (abiotic) methanol-adapted S. ovata; (b) Schematic of a bias-free photochemical diode device; (c) Overlap of the J-V curves of the biophotocathode and the photoanode on the RHE scale; (d) Photocurrent density versus applied bias for biophotochemical diodes combining the S. ovata/Pt/TiO2/n+ p-SiNW photocathode and Pt-Au/TiO2/p+ n-SiNW photoanode; (e) Faradaic efficiencies of the cathodic product (blue), all of the anodic products (pink) and each anodic product under bias-free operation of the biophotochemical diode [98]. Copyright 2024, Springer Nature Limited. (C): (a) Yields of CH3OH and CO (μmol/L, cm2) over various catalysts; (b) LSV curves of bare (Au/α-Fe2O3/RGO/ITO//Ru/RGP/Pt) and Au/α-Fe2O3/RGO/ITO//Ru/RGP/Pt with the presence of CO2 in the cathodic chamber and 30 mmol FF in the anodic chamber; (c) Simultaneous reduction of CO2 over the Au/α-Fe2O3/RGO/ITO photocathode and oxidation of FF over the Ru/RGO/Pt anode; (d) Effect of FF amount vs. conversion and yields of 2-FA and 5-HFA from the anode chamber and the effect of FF amount vs. the yields of CH3OH and CO from the cathode chamber; (e) Proposed mechanisms for the simultaneous reduction of CO2 and oxidation of FF via a paired electrode system using an H-cell [158]. Copyright 2021, Elsevier B.V.
Fig. 15. (a) Curves of linear voltammetry obtained for TiO2Nt under dark (curve I) and irradiated by UV-Vis light (curve II) and TiO2Nt-ZrO2 irradiated by UV-Vis light (curve III); (b) Photocurrent response curves obtained by chronoamperometry for TiO2Nt (curve I) and TiO2Nt-ZrO2 (curve II); (c) Representative scheme of the full cell with two compartments used in the experiments of organic compound oxidation and CO2 reduction; (d) Scheme of a photoanode-driven system of two electrodes [74]. Copyright 2019, Elsevier Ltd.
Fig. 16. (a) Schematic of the PEC cell used for NH3 production. (b) CV curves of various Pt-based electrocatalysts for GOR. (c) LSV curves of the Ru@TiNS/Ni/perovskite photocathode overlapped with OER and GOR. (d) Amount of NH3 generated at the photocathode and the corresponding FE. (e) FE of GOR products in the bias-free system under continuous operation [89]. Copyright 2024, Springer Nature Limited.
Fig. 17. (a) Illustration of two-compartment artificial PEC cell for simultaneous PEC oxidation and nitrite-ammonia conversion. (b) FE and selectivity of BAD on CdS/CdIn2S4 in the presence of various radical scavengers. (c) Photocurrent-time curves at 1.1 V versus CE of two-electrode configuration [84]. Copyright 2022, Wiley-VCH.
Fig. 18. (A): (a) Schematic illustrating the flow-through system; (b) H2O2 production and SMX removal under different filters and photoelectric modes in a phosphate buffer solution. Filters I-IV are for MXene, Fe-NC/MXene, Sb-SA/MXene and Sb-Fe/Mxene; (c) Schematic of the Sb-SA/MXene photocatalytic surface with H2O2 generation and the Fe-NC/MXene electrocatalytic surface with ?OH production concurrently; (d) The removal efficiency of Sb (III) and SMX by pure MXene at the feed-side and Fe-NC/MXene at the permeate-side simultaneously; (e) Repeatability of Sb-Fe/MXene filter for H2O2 production and SMX degradation [170]. Copyright 2023, Elsevier B.V. (B): (a) Schematic illustration of the PEC cell for degradation of 4-FP; (b) Concentration of residual 4-FP by direct photolytic, photocatalytic, electrocatalytic, and PEC process; (c) Concentration of residual 4-FP as well as corresponding defluorination and TOC removal efficiencies in the PEC system; (d) Plausible coexisting degradation pathways of 4-FP for the synchronous defluorination-oxidation process [174]. Copyright 2023, Elsevier B.V. (C): (a) Schematic illustration of PEC water purification on b-TiO2-x photoanode and H2O2 production on NADE; (b) ?OH quantitative concentration over b-TiO2-x and TiO2; (c) Degradation and reaction rate constant of SMT; (d) H2O2 production in b-TiO2-x/NADE and b-TiO2-x/Pt PEC systems; (e) Performance of the b-TiO2-x/NADE system for contaminant SMT degradation under EC, PC, and PEC conditions; (f) Comparison of water purification performance under applied bias voltage with the last five years reported PEC water purification literatures [86]. Copyright 2024, Elsevier B.V.
Fig. 19. (A): (a) Schematic diagram of nanozyme-coupled PEC degradation of 3-CP; (b) PEC degradation curves of 3-CP curves using WO3 photoanode and different cathodes; (c) The removal of 3-CP by different processes [176]. Copyright 2024, Elsevier Ltd. (B): (a) Degradation of SDZ in different system; (b) Energy consumption (EEO) of TiO2 NNs-NCDs/Co3O4 and single photoelectrode PEC system for SDZ removal; (c) Schematic illustration of SDZ degradation by TiO2 NNs-NCDs/Co3O4 PEC system [85]. Copyright 2023, Elsevier B.V. (C): (a) Schematic diagram of H2O2 and HClO were produced simultaneously at the cathode and anode; (b) the S-scheme charge transfer mechanism between In2S3 and MnIn2S4; (c) LSV plots of the ORR||ClOR and ORR||OER systems by In2S3/MnIn2S4/PVDF/NF||In2S3/MnIn2S4/CP; (d) The effect of bia potentials on the generation of H2O2 and HClO and current density and cell voltage versus time curves of this PEC cascade production system at 1.2 V vs. Ag/AgCl; (e) Degradation efficiency of MB in H2O2 alone system, HClO alone system, H2O2-HClO coupling system [82]. Copyright 2024, Elsevier B.V. (D): (a) The reaction mechanism of PEC degradation of TC by MgO/g-C3N4 photoanode coupled with MCF cathode system; (b) Degradation efficiency of TC in different systems [90]. Copyright 2024, Elsevier B.V. (E): (a) Reaction schemes of the Blue-TNTs PEC-PEF process; (b) 2,4-D degradation in different processes; (c) Effect of different cathodes on 2,4-D removal [76]. Copyright 2020, Elsevier Ltd.
Types of pollutant | Concentration | Degradation efficiency | Ref. |
---|---|---|---|
2,4-D MB SDZ SMT TC BPA SMX 4-FP 3-CP | 10.0 mg/L 10.0 mg/L 10.0 mg/L 10.0 mg/L 20.0 mg/L 10.0 mg/L 10.0 mg/L 20.0 ppm 10.0 mg/L | 100% 100% 98.54% 98.32% 100% 92% 94.7% 14.4 g h‒1 m‒2 91.1% | [ [ [ [ [ [ [ [ [ |
Table 1 Pollutant concentration and degradation performance.
Types of pollutant | Concentration | Degradation efficiency | Ref. |
---|---|---|---|
2,4-D MB SDZ SMT TC BPA SMX 4-FP 3-CP | 10.0 mg/L 10.0 mg/L 10.0 mg/L 10.0 mg/L 20.0 mg/L 10.0 mg/L 10.0 mg/L 20.0 ppm 10.0 mg/L | 100% 100% 98.54% 98.32% 100% 92% 94.7% 14.4 g h‒1 m‒2 91.1% | [ [ [ [ [ [ [ [ [ |
Fig. 20. (a) Schematic diagram of solar-powered photoelectrochemical biosynthetic reactions using non-recyclable real-world PET microplastics; (b) Time profiles of electrocatalytic production of H2O2; (c) Linear sweep voltammograms for NAD+ reduction; (d) Electrochemical production of NADH from NAD+ using CFP cathode; (e) Potential-dependent production rates of formate and acetate driven by α-Fe2O3 and Zr:α-Fe2O3 photoanodes [183]. Copyright 2024, Springer Nature Limited.
Types of coupling reaction | Photoelectrode catalyst | Reaction condition | Performance | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
- | + | + | - | + | - | + | - | + | ||
CO2 reduction | alcohol oxidation | methanol | Ni-2CBpy2+ -COF | Ni-2CBpy2+ -COF | 0.5 mol L-1 KHCO3 (pH = 7.2), −0.9 V vs. RHE | 1 mol L-1 KOH, 1 mol L-1 methanol, 1.4 V vs. RHE | FECO: 98% | FEHCOOH: 92% | [ | |
biomass oxidation | 4-methylbenzylalcohol | mITO/FDH | mTiO2/ STEMPO/ DPP-CA | 0.05 mol L-1 NaHCO3 (pH = 6.4), 0 V | 0.1 mol L-1 Na2B4O7 (pH = 8.0), AM 1.5G, λ > 420 nm, 0 V | yield4-MBAd: 3.1± 0.31 µmol cm-2, FE: 108 ± 18% | yieldformate: 2.16 ± 0.26 µmol cm-2, FE: 7 ± 17% | [ | ||
glucose | Bi/GaN/Si | NiOOH/ α-Fe2O3 | 0.5 mol L-1 KHCO3 (pH = 7.5), AM 1.5G, −0.2 V vs. RHE | 1 mol L-1 KOH (pH = 13.6), AM 1.5G, 1.0 V vs. RHE | FEHCOO−: 85.2% | FEHCOO−: 96% | [ | |||
glycerol | Pt/TiO2/ n+p-SiNW loaded with S.ovata | Pt-Au/TiO2/p+n-SiNW | bacterial medium with 50 mmol L-1, MES (pH = 6.2), red light (740 nm), 20 mW cm−2, −0.4 V vs. RHE | 1 mol L-1 KOH, 0.1 mol L-1 glycerol, red light (740 nm), 20 mW cm−2, 0.45 V vs. RHE | FEacetate: 86.8 ± 14.0% | FE: 79.3 ± 9.1% | [ | |||
glycerol | Ag | Ni/Si | 1 mol L-1 CsOH and 0.5 mol L-1 glycerol | 1 mol L-1 CsOH, 0.5 mol L-1 glycerol, 1000 mW cm-2, AM 1.5G, 1.0 V vs. Ag/AgCl | FECO: 95% | FE: 85% | [ | |||
glycerol | PVK/CuNF | Si/TiO2/ PtAu | 0.1 mol L-1 KHCO3 (pH = 6.8), AM 1.5G, 0 V vs. RHE | 1 mol L-1 KOH with 0.1 mol L-1 glycerol (pH = 6.8), AM1.5G, 0 V vs. RHE | faradaic yield (FY)C2: 5%-7% | FY: glycerate (53±1%), formate (18±4%), lactate (8±1%), acetate (7±2%) | [ | |||
furfural | Au/α-Fe2O3/ RGO | Ru/RGO/Pt | 0.1 mol L-1 KOH, −0.6 V vs. SCE, λ = 400-450 nm | 0.1 mol L-1 KOH, 10 mmol FF, −0.6 V vs. SCE | yieldCH3OH: 51 μmol L-1 cm-2, yieldCO: 2 μmol L-1 cm-2 | yield2-FA: 59%, yield5-HFA: 19% | [ | |||
degradation of organic pollutants | benzyl alcohol | GDL-Cu2O | TiO2Nt-ZrO2 | 0.1 mol L-1 KHCO3 (pH = 7) | 0.1 mol L-1 Na2SO4, 1.0 mmol L-1 benzyl alcohol (pH = 7), 125W high-pressure mercury lamp, 1.5 V vs. Ag/AgCl | yieldCH3OH: 3.8 mmol/L, yieldCH3CH2OH: 0.96 mmol/L | degradation rate:68% | [ | ||
Nitrate or nitrite reduction | glycerol oxidation | Ru@TiNS/Ni/perovskite | Pt@TiNS | 0.5 mol L-1 KNO3, 1.0 mol L-1 KOH, AM 1.5G, 0.0 V vs. CE | 0.5 mol L-1 glycerol and 1.0 mol L-1 KOH, 0.0 V vs. CE | FENH3: 99.5 ± 0.8%, SAP: 1744.9±20.6 µgNH3 cm-2 h-1 | FE: 98.1±2.4% | [ | ||
benzyl alcohol oxidation | TiO2/AZO/ Cu2O/Au | CdS/CdIn2S4 | MeCN with 1 mol L-1 KOH, AM 1.5G | MeCN with 0.2 mol L-1 TBAHFP, AM 1.5G, 0.67 V vs. RHE | FENH3: 98.1% | FEBAD: >99% selectivity: >98% | [ | |||
cyclohexane oxidation | R-TiO2 | R-TiO2 | 0.5 mol L-1 Na2CO3-NaHCO3 (pH = 9) with 0.1 mol L-1 CYC and 1.8 mol L-1 KNO3, AM 1.5G, 1.6 V | 0.5 mol L-1 Na2CO3-NaHCO3 (pH = 10) with 50 mmol L-1 CYC, 1.6 V | YieldCHO: 21.0 μmol cm‒2 h‒1 | YieldCYC: 0.43 μmol cm‒2 h‒1 | [ | |||
Oxygen reduction | Degradation of pollutants | SMX | Sb-SA/Mxene | Fe-NC/Mxene | phosphate buffer solution (pH = 6.8), with 10.0 mg L-1 SMX AM 1.5G, cell potential = 0.9 V | Phosphate, buffer solution (pH = 6.8), with 10.0 mg L-1 SMX cell potential = 0.9 V | yieldH2O2: 343.4 μmol L-1 | removal efficiency: 94.7% | [ | |
4-FP | graphite plate | TiO2 nanopillar | 0.1 mol L-1 Na2SO4, 20 ppm of 4-FP (pH = 6.0) | 0.1 mol L-1 Na2SO4, 20 ppm of 4-FP (pH = 6.0), 400 mW cm-2, 1.0 V vs. RHE | — | degradation rate: 14.4 g h‒1 m‒2 | [ | |||
SMT | NADE | b-TiO2-x | 0.1 mol L-1 Na2SO4, 0.5 V | 0.1 mol L-1 Na2SO4 with 10 mg L-1 SMT, 50 W LED lamp, 0.5 V | yieldH2O2: 6.83 μmol h-1 cm-2 | degradation efficiency: 98.32% | [ | |||
BPA | CF-DPA | WO3 | 200 mmol L-1 NaCl, pH = 5, -0.5 V vs. Ag/AgCl | 200 mmol L-1 NaCl with 10 mg L-1 BPA, pH = 10.8, 1 sun illumination | yieldH2O2: 5.4 mmol L-1 | degradation efficiency: 92% | [ | |||
CECs(TMP, SMX, CBZ DFC) | GDE | WO3 | simulated wastewater effluent or 7.5 mmol L-1 Na2SO4, cell potential = 1.5 V | simulated wastewater effluent or 7.5 mmol L-1 Na2SO4, concentration of each CEC (100 µg L-1), λ = 200-480 nm, 86 W m-2, cell potential = 1.5 V | FEH2O2: 55% | degradation rate constants: TMP (5.67 × 10−3 min−1), SMX (5.35 × 10−3 min−1), CBZ (2.9 × 10−3 min−1), DFC (4.35 × 10−3 min−1) | [ | |||
3-CP | BiOI | WO3 | 0.1 mol L-1 Na2SO4 with 10 mg L-1 3-CP,1.8 V | 0.1 mol L-1 Na2SO4 with 10 mg L-1 3-CP, 200 mW cm−2,1.8 V | — | degradation efficiency: 91.1% | [ | |||
SDZ | NCDs/ Co3O4/ Ti mesh | TiO2 NNs/Ti mesh | 0.05 mol L-1 Na2SO4 with 10 mg L-1 SDZ, LED light, 0.4 V | 0.05 mol L-1 Na2SO4 with 10 mg L-1 SDZ, LED light, 0.4 V | 0.05 mol L-1 Na2SO4, 10 mg L-1 SDZ, LED light, 0.4 V | degradation efficiency: 98.54% | [ | |||
MB | In2S3/ MnIn2S4/PVDF/ NF | In2S3/MnIn2S4/CP | 0.1 mol L-1 Na2SO4 with 10 mg L-1 MB, (pH = 3), 300 W Xenon lamp, λ > 420 nm, −0.6 V vs. Ag/AgCl | 35 g L-1 NaCl 10 mg L-1 MB 300 W Xenon lamp, λ > 420 nm, 1.3 V vs. Ag/AgCl | yieldH2O2: 2107.8 μmol L-1, degradation efficiency: 95.1% | yieldHClO: 28.5 μmol L-1, degradation efficiency: 98.5% | [ | |||
TC | MCF | MgO/g- C3N4 | 0.1 mol L-1 Na2SO4 with 20 mg L-1 TC (pH = 5.6), −0.5 V vs. Ag/AgCl | 0.1 mol L-1 Na2SO4 with 20 mg L-1 TC (pH = 5.6), LED lamp (380 nm < λ < 840 nm) | yieldH2O2: 10.19 mg L-1 | degradation efficiency: 100% | [ | |||
2,4-D | modified carbon felt | Blue-TNTs | 0.05 mol L-1 Na2SO4 with 10 mg L-1 2,4-D, 0.2 mmol L-1 FeSO4, 2.4 V | 0.05 mol L-1 Na2SO4 with 10 mg L-1 2,4-D, 0.2 mmol L-1 FeSO4, 200 W, Xenon lamp (λ = 300- 900 nm), 80 mW cm-2, 2.4 V | yieldH2O2: 9.7 mg L-1 | degradation efficiency: 100% | [ | |||
Enzymes activation | PET microplastics conversion | AQC/ CFP | Zr:α-Fe2O3 | 100 mmol L-1 KPi buffer (pH = 6.0), 0.16 V vs. RHE | 50 mg mL-1 PET microplastics, 5 mol L-1 NaOH, AM 1.5G, 1.0 V vs. RHE | formate and acetate produced by Zr:α-Fe2O3 | yieldH2O2: 1.85 ± 0.07 mmol L-1 h-1, yield(R)-1- phenylethanol: 1.63 ± 0.08 mmol L-1 h-1, TOFrAaeUPO: 32700±1500 h−1 | [ | ||
100 mmol L-1 NaPi buffer (pH = 7.5), −0.2 V vs. RHE | yieldNADH: 1.19± 0.07 mol L-1 h-1, yieldL-glutamate: 2.74 ± 0.11 mmol L-1 h-1, TOFGDH: 5500 ± 200 h−1, yield(R)-2-methylcyclohexanone: 1.16 ± 0.16 mol L-1 h-1, TOFTsOYE: 230 ± 30 h−1 |
Table 2 Summary of (photo)cathode and (photo)anode catalysts, reaction conditions, and performances in PEC coupling reactions.
Types of coupling reaction | Photoelectrode catalyst | Reaction condition | Performance | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
- | + | + | - | + | - | + | - | + | ||
CO2 reduction | alcohol oxidation | methanol | Ni-2CBpy2+ -COF | Ni-2CBpy2+ -COF | 0.5 mol L-1 KHCO3 (pH = 7.2), −0.9 V vs. RHE | 1 mol L-1 KOH, 1 mol L-1 methanol, 1.4 V vs. RHE | FECO: 98% | FEHCOOH: 92% | [ | |
biomass oxidation | 4-methylbenzylalcohol | mITO/FDH | mTiO2/ STEMPO/ DPP-CA | 0.05 mol L-1 NaHCO3 (pH = 6.4), 0 V | 0.1 mol L-1 Na2B4O7 (pH = 8.0), AM 1.5G, λ > 420 nm, 0 V | yield4-MBAd: 3.1± 0.31 µmol cm-2, FE: 108 ± 18% | yieldformate: 2.16 ± 0.26 µmol cm-2, FE: 7 ± 17% | [ | ||
glucose | Bi/GaN/Si | NiOOH/ α-Fe2O3 | 0.5 mol L-1 KHCO3 (pH = 7.5), AM 1.5G, −0.2 V vs. RHE | 1 mol L-1 KOH (pH = 13.6), AM 1.5G, 1.0 V vs. RHE | FEHCOO−: 85.2% | FEHCOO−: 96% | [ | |||
glycerol | Pt/TiO2/ n+p-SiNW loaded with S.ovata | Pt-Au/TiO2/p+n-SiNW | bacterial medium with 50 mmol L-1, MES (pH = 6.2), red light (740 nm), 20 mW cm−2, −0.4 V vs. RHE | 1 mol L-1 KOH, 0.1 mol L-1 glycerol, red light (740 nm), 20 mW cm−2, 0.45 V vs. RHE | FEacetate: 86.8 ± 14.0% | FE: 79.3 ± 9.1% | [ | |||
glycerol | Ag | Ni/Si | 1 mol L-1 CsOH and 0.5 mol L-1 glycerol | 1 mol L-1 CsOH, 0.5 mol L-1 glycerol, 1000 mW cm-2, AM 1.5G, 1.0 V vs. Ag/AgCl | FECO: 95% | FE: 85% | [ | |||
glycerol | PVK/CuNF | Si/TiO2/ PtAu | 0.1 mol L-1 KHCO3 (pH = 6.8), AM 1.5G, 0 V vs. RHE | 1 mol L-1 KOH with 0.1 mol L-1 glycerol (pH = 6.8), AM1.5G, 0 V vs. RHE | faradaic yield (FY)C2: 5%-7% | FY: glycerate (53±1%), formate (18±4%), lactate (8±1%), acetate (7±2%) | [ | |||
furfural | Au/α-Fe2O3/ RGO | Ru/RGO/Pt | 0.1 mol L-1 KOH, −0.6 V vs. SCE, λ = 400-450 nm | 0.1 mol L-1 KOH, 10 mmol FF, −0.6 V vs. SCE | yieldCH3OH: 51 μmol L-1 cm-2, yieldCO: 2 μmol L-1 cm-2 | yield2-FA: 59%, yield5-HFA: 19% | [ | |||
degradation of organic pollutants | benzyl alcohol | GDL-Cu2O | TiO2Nt-ZrO2 | 0.1 mol L-1 KHCO3 (pH = 7) | 0.1 mol L-1 Na2SO4, 1.0 mmol L-1 benzyl alcohol (pH = 7), 125W high-pressure mercury lamp, 1.5 V vs. Ag/AgCl | yieldCH3OH: 3.8 mmol/L, yieldCH3CH2OH: 0.96 mmol/L | degradation rate:68% | [ | ||
Nitrate or nitrite reduction | glycerol oxidation | Ru@TiNS/Ni/perovskite | Pt@TiNS | 0.5 mol L-1 KNO3, 1.0 mol L-1 KOH, AM 1.5G, 0.0 V vs. CE | 0.5 mol L-1 glycerol and 1.0 mol L-1 KOH, 0.0 V vs. CE | FENH3: 99.5 ± 0.8%, SAP: 1744.9±20.6 µgNH3 cm-2 h-1 | FE: 98.1±2.4% | [ | ||
benzyl alcohol oxidation | TiO2/AZO/ Cu2O/Au | CdS/CdIn2S4 | MeCN with 1 mol L-1 KOH, AM 1.5G | MeCN with 0.2 mol L-1 TBAHFP, AM 1.5G, 0.67 V vs. RHE | FENH3: 98.1% | FEBAD: >99% selectivity: >98% | [ | |||
cyclohexane oxidation | R-TiO2 | R-TiO2 | 0.5 mol L-1 Na2CO3-NaHCO3 (pH = 9) with 0.1 mol L-1 CYC and 1.8 mol L-1 KNO3, AM 1.5G, 1.6 V | 0.5 mol L-1 Na2CO3-NaHCO3 (pH = 10) with 50 mmol L-1 CYC, 1.6 V | YieldCHO: 21.0 μmol cm‒2 h‒1 | YieldCYC: 0.43 μmol cm‒2 h‒1 | [ | |||
Oxygen reduction | Degradation of pollutants | SMX | Sb-SA/Mxene | Fe-NC/Mxene | phosphate buffer solution (pH = 6.8), with 10.0 mg L-1 SMX AM 1.5G, cell potential = 0.9 V | Phosphate, buffer solution (pH = 6.8), with 10.0 mg L-1 SMX cell potential = 0.9 V | yieldH2O2: 343.4 μmol L-1 | removal efficiency: 94.7% | [ | |
4-FP | graphite plate | TiO2 nanopillar | 0.1 mol L-1 Na2SO4, 20 ppm of 4-FP (pH = 6.0) | 0.1 mol L-1 Na2SO4, 20 ppm of 4-FP (pH = 6.0), 400 mW cm-2, 1.0 V vs. RHE | — | degradation rate: 14.4 g h‒1 m‒2 | [ | |||
SMT | NADE | b-TiO2-x | 0.1 mol L-1 Na2SO4, 0.5 V | 0.1 mol L-1 Na2SO4 with 10 mg L-1 SMT, 50 W LED lamp, 0.5 V | yieldH2O2: 6.83 μmol h-1 cm-2 | degradation efficiency: 98.32% | [ | |||
BPA | CF-DPA | WO3 | 200 mmol L-1 NaCl, pH = 5, -0.5 V vs. Ag/AgCl | 200 mmol L-1 NaCl with 10 mg L-1 BPA, pH = 10.8, 1 sun illumination | yieldH2O2: 5.4 mmol L-1 | degradation efficiency: 92% | [ | |||
CECs(TMP, SMX, CBZ DFC) | GDE | WO3 | simulated wastewater effluent or 7.5 mmol L-1 Na2SO4, cell potential = 1.5 V | simulated wastewater effluent or 7.5 mmol L-1 Na2SO4, concentration of each CEC (100 µg L-1), λ = 200-480 nm, 86 W m-2, cell potential = 1.5 V | FEH2O2: 55% | degradation rate constants: TMP (5.67 × 10−3 min−1), SMX (5.35 × 10−3 min−1), CBZ (2.9 × 10−3 min−1), DFC (4.35 × 10−3 min−1) | [ | |||
3-CP | BiOI | WO3 | 0.1 mol L-1 Na2SO4 with 10 mg L-1 3-CP,1.8 V | 0.1 mol L-1 Na2SO4 with 10 mg L-1 3-CP, 200 mW cm−2,1.8 V | — | degradation efficiency: 91.1% | [ | |||
SDZ | NCDs/ Co3O4/ Ti mesh | TiO2 NNs/Ti mesh | 0.05 mol L-1 Na2SO4 with 10 mg L-1 SDZ, LED light, 0.4 V | 0.05 mol L-1 Na2SO4 with 10 mg L-1 SDZ, LED light, 0.4 V | 0.05 mol L-1 Na2SO4, 10 mg L-1 SDZ, LED light, 0.4 V | degradation efficiency: 98.54% | [ | |||
MB | In2S3/ MnIn2S4/PVDF/ NF | In2S3/MnIn2S4/CP | 0.1 mol L-1 Na2SO4 with 10 mg L-1 MB, (pH = 3), 300 W Xenon lamp, λ > 420 nm, −0.6 V vs. Ag/AgCl | 35 g L-1 NaCl 10 mg L-1 MB 300 W Xenon lamp, λ > 420 nm, 1.3 V vs. Ag/AgCl | yieldH2O2: 2107.8 μmol L-1, degradation efficiency: 95.1% | yieldHClO: 28.5 μmol L-1, degradation efficiency: 98.5% | [ | |||
TC | MCF | MgO/g- C3N4 | 0.1 mol L-1 Na2SO4 with 20 mg L-1 TC (pH = 5.6), −0.5 V vs. Ag/AgCl | 0.1 mol L-1 Na2SO4 with 20 mg L-1 TC (pH = 5.6), LED lamp (380 nm < λ < 840 nm) | yieldH2O2: 10.19 mg L-1 | degradation efficiency: 100% | [ | |||
2,4-D | modified carbon felt | Blue-TNTs | 0.05 mol L-1 Na2SO4 with 10 mg L-1 2,4-D, 0.2 mmol L-1 FeSO4, 2.4 V | 0.05 mol L-1 Na2SO4 with 10 mg L-1 2,4-D, 0.2 mmol L-1 FeSO4, 200 W, Xenon lamp (λ = 300- 900 nm), 80 mW cm-2, 2.4 V | yieldH2O2: 9.7 mg L-1 | degradation efficiency: 100% | [ | |||
Enzymes activation | PET microplastics conversion | AQC/ CFP | Zr:α-Fe2O3 | 100 mmol L-1 KPi buffer (pH = 6.0), 0.16 V vs. RHE | 50 mg mL-1 PET microplastics, 5 mol L-1 NaOH, AM 1.5G, 1.0 V vs. RHE | formate and acetate produced by Zr:α-Fe2O3 | yieldH2O2: 1.85 ± 0.07 mmol L-1 h-1, yield(R)-1- phenylethanol: 1.63 ± 0.08 mmol L-1 h-1, TOFrAaeUPO: 32700±1500 h−1 | [ | ||
100 mmol L-1 NaPi buffer (pH = 7.5), −0.2 V vs. RHE | yieldNADH: 1.19± 0.07 mol L-1 h-1, yieldL-glutamate: 2.74 ± 0.11 mmol L-1 h-1, TOFGDH: 5500 ± 200 h−1, yield(R)-2-methylcyclohexanone: 1.16 ± 0.16 mol L-1 h-1, TOFTsOYE: 230 ± 30 h−1 |
Fig. 21. (a) Optimum reaction potentials of (photo)athode, (photo)anode and coupling systems. (b) The standard electrochemical potential of most reviewed reactions.
Fig. 22. Potential dependence of in situ first-order derivatives of the XANES spectra (a) and EXAFS spectra (b) of the CuSiOx under CO2RR using chronoamperometry [188]. Copyright 2023, American Chemical Society. In situ Raman spectra of ZIF-CoNi (c) and ZIF-CoNi(g) (d) during electrochemical reconstruction [191]. Copyright 2024, Wiley-VCH. (e) In situ Raman spectra of Bi2S3/CP as a function of the applied potentials [192]. Copyright 2024, Wiley-VCH. In situ FTIR spectra of isopropanol (f) and n-propanol (g) adsorbed on TiO2, Bi2O3, and Bi2O3/TiO2 [195]. Copyright 2022, American Chemical Society.
Fig. 23. (a) In situ EPR spectrum detected from the photolysis of TiO2-Ov-400; [167] Copyright 2021, Springer Nature Limited. (b) In situ XRD patterns at ?0.4 V for various time points [203]. Copyright 2023, Wiley-VCH. In situ XPS spectra of Pd-ZIS and ZIS: S 2p (c) and Pd 3d (d) [206]. Copyright 2023, American Chemical Society.
|
[1] | 李馨悦, 林海莉, 贾雪梅, 陈士夫, 曹静. 双活性基团调控的S型异质结用于增强光催化CO2还原耦合环丙沙星氧化[J]. 催化学报, 2025, 73(6): 205-221. |
[2] | 贾萁森, 王雅楠, 赵艳, 田圳铭, 任璐瑶, 崔学晶, 刘光波, 陈鑫, 李文震, 姜鲁华. 通过调节钛氧化物界面水结构驱动光电催化海水选择性氧化产氧[J]. 催化学报, 2025, 72(5): 154-163. |
[3] | 关志星, 张颖, 冯芳芳, 李朝辉, 刘艳莉, 吴梓峰, 郑兴兴, 扶雄辉, 张渊明, 廖文彬, 陈嘉璐, 刘宏光, 朱毅, 魏永革. 在BiVO4光阳极上构建局域电场以促进水氧化过程中的质子转移[J]. 催化学报, 2025, 72(5): 176-186. |
[4] | 黄渝, 邹磊, 黄远标, 曹荣. 光、电、光电催化甲烷转化至醇类物质[J]. 催化学报, 2025, 70(3): 207-229. |
[5] | 蒋元元, 张妍, 刘梦梦, 刘璐璐, 陈红, 叶盛. 双电荷传输媒介促进赤铁矿光阳极的电荷转移实现高效光电催化水分解[J]. 催化学报, 2025, 69(2): 75-83. |
[6] | Athira Krishnan, K. Archana, A. S. Arsha, Amritha Viswam, M. S. Meera. 宽带隙半导体在电催化和光催化水分解绿色制氢中的潜在作用[J]. 催化学报, 2025, 68(1): 103-145. |
[7] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[8] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
[9] | 孙旭科, 刘荣升, 范改丽, 刘昱含, 叶芳秀, 于政锡, 刘中民. Zn/ZSM-5催化剂中Zn物种与CO2和正丁烷耦合反应间相关性研究[J]. 催化学报, 2024, 61(6): 154-163. |
[10] | 巴凯凯, 刘禹男, 张凯, 王平, 林艳红, 王德军, 李子亨, 谢腾峰. MOFs衍生的二氧化钛促进Ti-Fe2O3光阳极高效光电化学水氧化的多重效应[J]. 催化学报, 2024, 61(6): 179-191. |
[11] | 田甜, 王婉婷, 王怡萍, 李可欣, 李园园, 付文升, 丁勇. CoOx促进Mo掺杂BiVO4光电催化H2O2合成及原位降解污染物[J]. 催化学报, 2024, 67(12): 176-185. |
[12] | 郑颖滨, 张新宝, 李俊杰, 安杰, 徐龙伢, 李秀杰, 朱向学. 负载型多相金属催化剂用于二氧化碳辅助低碳烷烃氧化脱氢反应[J]. 催化学报, 2024, 65(10): 40-69. |
[13] | 魏艳, 段睿智, 张巧兰, 曹有智, 王金圆, 王冰, 万雯瑞, 刘春燕, 陈加藏, 高红, 景欢旺. TiO2/TiN纳米管异质结用于光电催化CO2还原: 氮辅助活性氢机制[J]. 催化学报, 2023, 47(4): 243-253. |
[14] | 池海波, 王旺银, 马江平, 段睿智, 丁春梅, 宋睿, 李灿. 光电催化脱氟-氧化过程实现氟芳烃污染物的高效矿化[J]. 催化学报, 2023, 55(12): 171-181. |
[15] | 张鹏, 李佑稷, 李鑫. 太阳能驱动H2O2的原位生产与利用: 自循环光催化芬顿系统[J]. 催化学报, 2023, 44(1): 4-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||