催化学报 ›› 2025, Vol. 73: 79-98.DOI: 10.1016/S1872-2067(25)64710-3
收稿日期:
2024-12-19
接受日期:
2025-02-19
出版日期:
2025-06-18
发布日期:
2025-06-20
通讯作者:
*电子信箱: lijing@cqu.edu.cn (李静),zdwei@cqu.edu.cn (魏子栋).
基金资助:
Jie Chen, Jing Li(), Zidong Wei(
)
Received:
2024-12-19
Accepted:
2025-02-19
Online:
2025-06-18
Published:
2025-06-20
Contact:
*E-mail: lijing@cqu.edu.cn (J. Li),zdwei@cqu.edu.cn (Z. Wei).
About author:
Jing Li received her Bachelor's degree from Tianjin University in 1999 and earned her PhD from the National University of Singapore in 2008. Following her postdoctoral research at Fudan University (2008-2011), she became an Associate Professor at Tongji University (2011-2012). She then served as a Research Scientist at Singapore's Institute of Materials Research and Engineering (IMRE) from 2012 to 2014. Since 2014, Dr. Li has held the position of Full Professor at Chongqing University's School of Chemistry and Chemical Engineering, where her research focuses on electrocatalysis, organic electrosynthesis, and chemical energy conversion.Supported by:
摘要:
随着可持续发展理念的深入人心, 变废为宝的思想正日益成为社会共识. 塑料作为现代生活中不可或缺的材料, 其不当处置导致的焚烧和填埋问题日益严峻. 其中, 聚对苯二甲酸乙二醇酯(PET)作为包装和纺织品领域的主要塑料, 其回收利用尤为关键. 在此背景下,采用电催化技术将废PET衍生的乙二醇(EG)高效转化为高附加值产物乙醇酸(GA), 不仅具有重要的环境效益, 更展现出显著的经济价值和应用前景. 然而, EG具有两个相同且相对活泼的羟基, 如何选择性地氧化其中一个羟基以避免其过度氧化或发生C-C键断裂是一个巨大的挑战. 近年来, 通过采用不同策略对催化剂的电子结构进行调控, 有效地防止了C-C键的进一步断裂. 本文系统综述了EG选择性电催化氧化制备GA的最新研究进展及其反应机理, 旨在为开发高效催化体系提供理论指导, 进而推动绿色化学与可持续发展战略的实施.
本文系统地总结了电催化EG选择性氧化制GA的最新研究进展. 首先, 详细地介绍了EG高效选择性氧化制GA电催化剂的最新研究成果, 研究主要从合金化、界面工程、单原子和杂原子掺杂四个方面入手, 深入探讨了不同策略对催化剂电子结构的影响, 从而优化反应中间体在催化剂表面的吸附强度, 防止C-C键断裂, 提高GA选择性. 其次, 通过回顾在线差分电化学质谱法、原位傅立叶变换红外光谱和原位电化学衰减全反射表面增强红外吸收光谱的数据, 阐明了EG选择氧化制GA的反应途径和催化机理. 最后, 对未来电催化EG选择性氧化制GA催化剂的设计和调控进行了展望: (1) 尝试探索其他基底材料. 目前, 绝大多数电催化剂大多使用泡沫镍(NF)作为底物, 以达到较高的电流密度. 相比之下, 粉末状催化剂材料的电流密度较低, 难以满足工业电流密度. 但NF材料的成本相对较高, 而且受到外力作用时骨架容易塌陷和腐蚀. 因此, 后续可尝试探索其他更具优势的基底材料, 例如碳布、石墨烯或还原氧化石墨烯等, 进一步提高性能, 降低成本. (2) 提高阳极制氢的原子利用率. 乙二醇氧化反应(EGOR)是一个连续的去质子化过程, 去除的*H通常会与电解质中的*OH结合生成水, 这大大降低了原子的有效利用率. (3) 亲氧性金属氧化物或氢氧化物的设计和构造可有效提高产物选择性、催化剂电流密度和稳定性. 亲氧金属氧化物或氢氧化物可提高碱性溶液中OH-的转化率, 生成*OH活性物种, 并促进催化剂表面*CO物种的去除, 避免催化剂中毒. (4) 贵金属基催化剂成本高、储量少的问题仍有待解决. 目前有关EGOR电催化剂的研究仍主要集中在贵金属基催化剂上, 未来的研究方向应减少对贵金属基催化剂的依赖, 积极探索非贵金属基催化剂(如过渡金属Co, Cu, Ni, Mo等)的潜力. (5) 开发酸性条件下的EGOR电催化剂. 简化羧酸产物的分离和纯化过程, 从而降低成本. (6) 对EGOR氧化生成GA的整个机理过程还缺乏更深入的探索. 合理利用原位表征技术监测反应过程中的催化剂活性位点和反应中间产物, 如原位拉曼光谱、原位X射线吸收光谱等, 有助于深入了解反应机理, 从而实现精确调控.
综上, 本综述系统地总结了电催化EG选择性制GA的优势, 研究进展、反应路径、反应机制以及目前存在的挑战, 希望通过推动相关研究人员进一步思考, 进一步推动利用电催化技术将废PET衍生的生物质小分子EG转化生成GA, 开发高效的电催化剂提供一定的参考和借鉴.
陈洁, 李静, 魏子栋. 电催化乙二醇选择性氧化制备乙醇酸的最新进展[J]. 催化学报, 2025, 73: 79-98.
Jie Chen, Jing Li, Zidong Wei. Recent advances in the preparation of glycolic acid by selective electrocatalytic oxidation of ethylene glycol[J]. Chinese Journal of Catalysis, 2025, 73: 79-98.
Synthesis strategy | Catalysts | Electrolyte | Working potential (V) (mA cm-2) | Chronoamperometric stability | FE (%) | Ref. |
---|---|---|---|---|---|---|
Alloy | PdAg/NF | 0.5 mol L-1 KOH + 1 mol L-1 KOH | 0.57 (10) | 60% (3600 s) | 92% (0.91) | [ |
Pd1Ag1 NP | 1 mol L-1 EG + 1 mol L-1 KOH | — | 83% (3600 s) | — | [ | |
Pt1Mo1/C | 0.5 mol L-1 KOH + 0.5 mol L-1 EG | — | 70% (1200 s) | — | [ | |
PdCu MC | 1 mol L-1 KOH + PET hydrolysate | — | — | 93.6% (0.83) | [ | |
Pd67Ag33 | 1 mol L-1 KOH + 1 mol L-1 EG | 0.53 (10) | 83.8% (3600s) | 92.7% (1.0) | [ | |
PdB | 1 mol L-1 KOH + 1 mol L-1 EG | 0.65 (100) | 62.39% (7200) | 93.8% (0.7) | [ | |
PdCuene/NF | 1 mol L-1 KOH + 1 mol L-1 EG | 0.67 (100) | — | 92% (0.82) | [ | |
Co-Ni/CP | 1 mol L-1 KOH + 1 mol L-1 EG | 1.23 (10) | — | >90% (1.42) | [ | |
Single-atom | Pd-N4/Cu-N4 | 1 mol L-1 KOH + 1 mol L-1 EG | — | 10% (21600 s) | 86% (1.0V) | [ |
Heteroatom-doped | Pt/SePC | 1 mol L-1 KOH + 0.1 mol L-1 EG | — | 82.6% (20 h) | — | [ |
Interface engineering | Pd/NiMoO4/NF | 1 mol L-1 NaOH + 1 mol L-1 EG | 0.79 (100) | — | 95.7% (1.0) | [ |
Pd-CuCo2O4/NF | 1 mol L-1 NaOH + 0.5 mol L-1 NaCl + 1 mol L-1 EG | 0.80 (200) | 35% (12 h) | 96.1% (0.9) | [ | |
Pd-Ni(OH)2/NF | 1 mol L-1 KOH + 1 mol L-1 EG | 0.89 (100) | 85% (3600 s) | 94.1% (1.0) | [ | |
Au/Ni(OH)2 | 3 mol L-1 KOH + 0.3 mol L-1 EG | 1.1 (603.4) | — | 96% (1.4) | [ | |
PtMn/MCM-41 | 0.3 mol L-1 EG | — | — | — | [ | |
Pt-Ni(OH)2/NF | 1.0 mol L-1 KOH + 0.1 mol L-1 EG | 0.69 (100) | 56.8% (5 h) | 93% (1.0) | [ | |
Pt/𝛾-NiOOH/NF | 1.0 mol L-1 KOH + 0.3 mol L-1 EG | 0.55 (100) | — | 97% (0.55) | [ | |
PtRh0.02@Rh | 0.1 mol L-1 KOH +0.5 mol L-1 EG | — | — | — | [ | |
Pt/Ir hetero-metallene | 1.0 mol L-1 KOH + 0.1 mol L-1 EG | 0.75 (100) | — | 87% (1.0) | [ |
Table 1 The EG-to-GA performances of recently reported electrocatalysts.
Synthesis strategy | Catalysts | Electrolyte | Working potential (V) (mA cm-2) | Chronoamperometric stability | FE (%) | Ref. |
---|---|---|---|---|---|---|
Alloy | PdAg/NF | 0.5 mol L-1 KOH + 1 mol L-1 KOH | 0.57 (10) | 60% (3600 s) | 92% (0.91) | [ |
Pd1Ag1 NP | 1 mol L-1 EG + 1 mol L-1 KOH | — | 83% (3600 s) | — | [ | |
Pt1Mo1/C | 0.5 mol L-1 KOH + 0.5 mol L-1 EG | — | 70% (1200 s) | — | [ | |
PdCu MC | 1 mol L-1 KOH + PET hydrolysate | — | — | 93.6% (0.83) | [ | |
Pd67Ag33 | 1 mol L-1 KOH + 1 mol L-1 EG | 0.53 (10) | 83.8% (3600s) | 92.7% (1.0) | [ | |
PdB | 1 mol L-1 KOH + 1 mol L-1 EG | 0.65 (100) | 62.39% (7200) | 93.8% (0.7) | [ | |
PdCuene/NF | 1 mol L-1 KOH + 1 mol L-1 EG | 0.67 (100) | — | 92% (0.82) | [ | |
Co-Ni/CP | 1 mol L-1 KOH + 1 mol L-1 EG | 1.23 (10) | — | >90% (1.42) | [ | |
Single-atom | Pd-N4/Cu-N4 | 1 mol L-1 KOH + 1 mol L-1 EG | — | 10% (21600 s) | 86% (1.0V) | [ |
Heteroatom-doped | Pt/SePC | 1 mol L-1 KOH + 0.1 mol L-1 EG | — | 82.6% (20 h) | — | [ |
Interface engineering | Pd/NiMoO4/NF | 1 mol L-1 NaOH + 1 mol L-1 EG | 0.79 (100) | — | 95.7% (1.0) | [ |
Pd-CuCo2O4/NF | 1 mol L-1 NaOH + 0.5 mol L-1 NaCl + 1 mol L-1 EG | 0.80 (200) | 35% (12 h) | 96.1% (0.9) | [ | |
Pd-Ni(OH)2/NF | 1 mol L-1 KOH + 1 mol L-1 EG | 0.89 (100) | 85% (3600 s) | 94.1% (1.0) | [ | |
Au/Ni(OH)2 | 3 mol L-1 KOH + 0.3 mol L-1 EG | 1.1 (603.4) | — | 96% (1.4) | [ | |
PtMn/MCM-41 | 0.3 mol L-1 EG | — | — | — | [ | |
Pt-Ni(OH)2/NF | 1.0 mol L-1 KOH + 0.1 mol L-1 EG | 0.69 (100) | 56.8% (5 h) | 93% (1.0) | [ | |
Pt/𝛾-NiOOH/NF | 1.0 mol L-1 KOH + 0.3 mol L-1 EG | 0.55 (100) | — | 97% (0.55) | [ | |
PtRh0.02@Rh | 0.1 mol L-1 KOH +0.5 mol L-1 EG | — | — | — | [ | |
Pt/Ir hetero-metallene | 1.0 mol L-1 KOH + 0.1 mol L-1 EG | 0.75 (100) | — | 87% (1.0) | [ |
Fig. 3. SEM (a) and TEM (b) images of PdAg/NF. (c) LSV curves of PdAg/NF. (d) 1H NMR spectra of the electrolyte before and after 2 h anodic ethylene glycol oxidation on a PdAg/NF. (e) Faradic efficiencies (FEs) of PdAg/NF for glycolic-acid production. (f) Stability test of PdAg/NF. (g) Crystal orbital Hamiltonian population analysis of intermediate adsorbed on Pd (111) and PdAg (111) surfaces. (h) Illustration of adsorption energy of intermediates on Pd (111) and PdAg (111). The green atoms are palladium and the blue atoms are silver. Reprinted with permission from Ref. [13]. Copyright 2021, Elsevier Inc.
Fig. 4. (a) A scheme illustrating the synthesis of bimetallic PdCu MC nanozymes. SEM (b,c) and TEM (d,e) images of PdCu MC. (f) 1H NMR spectra of PETHOR products and (g) summarized FEGA and GA yield rates over PdCu MCs (green: FA; gray: TPA; purple: maleic acid; orange: GA; yellow: EG) at various potentials. 1H NMR spectra of PETHOR products (h) and summarized FEFA and FA yield rates (i) over PdCu MCs in OCP and a high potential range. (j) A scheme illustrating the two-electrode coupling system by PdCu MC nanozymes. Reprinted with permission from Ref. [22]. Copyright 2024, Wiley-VCH GmbH.
Fig. 5. (a) Schematic diagram for preparing the mPd3Au/NF. SEM (b,c) and HRTEM (d) images of Pd3Au film. (e) LSV curves of mPd3Au/NF. (f) 1H NMR spectra of PET hydrolysate. (red: EG, purple: GA, yellow: maleic acid, blue: TPA, green: formic acid). (g) GA yield and FEGA for mPd3Au/NF. (h) PDOS of d bands of Pd for Pd3Au and Pd. (i) Charge density differences for *NO3 and *C2H6O2 adsorbed on Pd3Au. Yellow and blue denote charge accumulation and depletion regions, respectively. The COHP plots of (j) *NO3 and (k) *OC-CH2OH adsorbed on Pd3Au (111) and Pd (111) surfaces. Reprinted with permission from Ref. [44]. Copyright 2024, Wiley-VCH GmbH.
Fig. 6. Projected density of states (PDOS) of Pd (a) and PdB (b). (c) Calculated adsorption energies of *OH and *EG on the surface of Pd and PdB. (d) Calculated adsorption energies of *CO and *COCH2OH on the surface of Pd and PdB. (e) Schematic illustration of the preparation for Pd aerogel and PdB alloy aeroge. (f) TEM of PdB. (g) HRTEM of PdB. (h) Mass-normalized EGOR CV profiles of the various electrocatalysts at a scan rate of 50 mV s-1 measured in 1 mol L-1 EG and 1 mol L-1 KOH. (i) LSV curves over PdB in 1 mol L-1 KOH with and without EG. (j) Chronoamperometric tests at 0.9 V versus RHE for 7200 s. (k) Potential dependent FEs for GA measured on Pd and PdB. (l) 1H NMR spectra of anodic electrolyte and (m) corresponding EG consumption, GA yield, and FEGA during electrolysis over PdB as a function of time for chronoamperometric tests at 0.9 V. Reprinted with permission from Ref. [24]. Copyright 2024 Wiley-VCH Gmbh.
Fig. 7. (a) Schematic diagram of the pro-cess for electrocatalytic preparation of GA from EG. The EGOR reaction pathways over Co/Ni-CP. SEM (b) and HRTEM (c) images of Co-Ni/CP. (d) Schematic diagram of the reaction process. (e) Comparison of the adsorption energy of EG on different catalysts. (f) Gibbs free energy diagrams for EG-to-GA oxidation on Co/CP, Ni/CP and Co-Ni/CP. (g) FEs at different voltages during EGOR. (h) LSV curves of EGOR-HER system and OER-HER system. (i) Stability testing of Co-Ni/CP. Reprinted with permission from Ref. [26]. Copyright 2024 Wiley-VCH GmbH.
Fig. 8. (a) The schematic diagram shows the synthesis of the DSAC (dual single-atom catalyst) of Pd-N4/Cu-N4 by electrochemical reduction. (b) TEM image of reduced CuPc (Cu clusters and defected N4 sites) by electrochemical reduction. (c,d) HAADF-STEM images of Pd-N4/Cu-N4. (e) the CV curve of the partial EG oxidation on Pd-N4/Cu-N4, Pd/C, and CuPc. (f) the FE of the glycolate (blue) and formate (orange) products produced by the as-prepared catalyst Pd-N4/Cu-N4. Reprinted with permission from Ref. [27]. Copyright 2022 Wiley-VCH GmbH.
Fig. 9. (a) Schematic illustration of the synthesis of Pd-Ni(OH)2 on NF. SEM (b) and TEM (c) images (inset: SAED image) of Pd-Ni(OH)2/NF. (d) Surface valence band photoemission spectra of Pd and Pd-Ni(OH)2. (e) LSV curves and (f) comparisons of the potentials needed to achieve designated current densities for Pd-Ni(OH)2/NF. (g) 1H NMR spectra of electrolyte products. (h) FE of Pd-Ni(OH)2/NF for GA production. (i) Stability test of Pd-Ni(OH)2/NF. (j) PDOS (d-band) of Pd and Pd-Ni(OH)2. (k) Calculated adsorption energies of EG and OH on the surfaces of Pd and Pd-Ni(OH)2. (l) Calculated adsorption energies of GA and CO on the surfaces of Pd and Pd-Ni(OH)2. (m) Gibbs free energy diagrams for EG-to-GA oxidation on Pd and Pd-Ni(OH)2. Reprinted with permission from Ref. [31]. Copyright 2023, Wiley-VCH GmbH.
Fig. 10. (a) Schematic illustration for the synthesis of Pd/NiMoO4/NF. TEM (b) and HRTEM (c,d) images of Pd/NiMoO4/NF. XPS valence band spectra of Pd/NiMoO4/NF (e) and (f) Pd/NF. (g) LSV curves of obtained electrocatalysts for ethylene glycol anodic oxidation. (h) Tafel slopes of Pd/NiMoO4/NF and Pd/NF. (i) Faradaic efficiencies (FEs) of Pd/NiMoO4/NF for sodium glycolate production. (j) FEs and current density of Pd/NiMoO4/NF for sodium glycolate production for 1500 h electrolysis cycles. Schematic illustration of the pro-posed EGOR mechanism on Pd/NiMoO4/NF (k) and Pd/NF (l). Reprinted with permission from Ref. [29]. Copyright 2024, The Author(s).
Fig. 11. (a) Schematic diagram of the synthesis of Pd-CuCo2O4. SEM (b), TEM (c) andHRTEM (d) images of Pd-CuCo2O4. (e) Comparison of anodic potentials between EGOR and OER for Pd-CuCo2O4 in ASS. (f) FE and productivity of GA at each batch of reaction. (g) The corresponding electricity consumption of ISE or ASE at different current densities. (h) Calculated adsorption energies of EG and OH on the surfaces of Pd and Pd-CuCo2O4 (i) Calculated adsorption energies of Cl on the surfaces of Pd and Pd-CuCo2O4. (j) PDOS (d-band) of Pd and Pd-CuCo2O4. (k) Gibbs free energy diagrams for EG-to-GA oxidation on Pd and Pd-CuCo2O4. Reprinted with permission from Ref. [30]. Copyright 2024, Wiley-VCH GmbH.
Fig. 12. Electrocatalytic Upcycling of Glycerol (from Biodiesel Byproduct) and Ethylene Glycol (from Polyethylene Terephthalate (PET) Waste) to LA and GA, respectively. Reprinted with permission from Ref. [12]. Copyright 2023, American Chemical Society.
Fig. 13. HAADF-STEM images and particle size distribution of Pt/MCM-41 (a), PtMn/MCM-41 (IM) (b), PtMn/MCM-41 (In-70) (c) and PtMn/MCM-41(In-26) (d) catalysts. (e,f) HRTEM images of the PtMn/MCM-41 (In-70) catalyst. (g) Mulliken charge (|e|) distribution. (h) Energy profiles and configuration diagrams of reactants (R), transition states (TS) and products (P) for the oxidation of ethylene glycol to glycolic acid on the Pt (111) and Pt-Mn2O3 (111) models. (O atoms colored red. C atoms colored gray. H atoms colored white. Pt atom colored dark blue. Mn atom colored violet.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Reprinted with permission from Ref. [32]. Copyright 2020 Elsevier B.V All rights reserved.
Fig. 14. (a) Schematic illustration of the preparation of the Pt-Ni(OH)2/NF. SEM (b,c) and HRTEM (d) images of Pt-Ni(OH)2. (e) LSV curves of Pt-Ni(OH)2/NF and Ni(OH)2/NF in 1.0 mol L-1 KOH and 0.1 mol L-1 EG. (f) 1H NMR spectra of products by electrolysis on Pt-Ni(OH)2/NF. (g) Faraday efficiencies of EGOR at various potentials on Pt-Ni(OH)2/NF. (h) The partial density of states (PDOS) of Pt-Ni(OH)2 and Pt. (i) Charge density difference of Pt-Ni(OH)2. (j) Free-energy diagram of EGOR on Pt-Ni(OH)2 and Pt. Reprinted with permission from Ref. [33]. Copyright 2024, American Chemical Society.
Fig. 15. TEM (a) and HR-TEM (b) image of Pt/SeC. LSV curves (c) and chronoamperometric measurements (d) of different catalysts. (e) Product selectivity and EG conversion under different potentials at 60 °C. (f) Consequtive cyclic EGOR test of Pt/SePC. (g) The structure of the carbon support without and with Se dopant; and d-band center (εd) of selected Pt atom and interaction between Pt NP and support. (h) Gibbs free energy diagram. Reprinted with permission from Ref. [28]. Copyright 2024, Wiley-VCH GmbH.
Fig. 16. (a) Electrochemical in-situ FTIR spectra of Pd-CuCo204 at various potentials. In-situ electrochemical FTIR spectra of Pd (b) and Pd-Ni(OH)2 (c). In-situ ATR-SEIRAS spectra collected on Pd (d) and PdB (e) electrodes.
Fig. 17. (a) In-situ IRAS spectra collected on Au electrodes in 1 mol L-1 NaOH + 1 mol L-1 EG solution. (b) HPLC profiles of the samples taken from the reaction residual on Au electrodes during the EGOR in 1 mol L-1 NaOH + 1 mol L-1 EG solution. (c) In situ ATR-SEIRA spectra taken on the Au surface in 0.1 mol L-1 NaOH containing 1 mol L-1 EG solution. Reprinted with permission from Ref. [66]. Copyright 2024, American Chemical Society.
Fig. 18. (a) In-situ electrochemical IRAS on the Pt electrodes in 1 mol L-1 NaOH and 1 mol L-1 EG solution at 2 mV s-1. Reprinted with permission from ref 30. Copyright 2024, American Chemical Society. (b) In-situ FTIR of Pt-Ni(OH)2/NF catalysis. Reprinted with permission from Ref. [33]. Copyright 2024, American Chemical Society.
|
[1] | 潘嘉宁, 李敏, 王瑛琦, 谢文富, 张天雨, 王强. 先进的光电催化耦合反应[J]. 催化学报, 2025, 73(6): 99-145. |
[2] | 胡呈弘, 张悦, 张仪, 黄沁彤, 沈葵, 陈立宇, 李映伟. Sn电子调节器增强Fe位点电催化CO2还原性能[J]. 催化学报, 2025, 72(5): 222-229. |
[3] | 贾萁森, 王雅楠, 赵艳, 田圳铭, 任璐瑶, 崔学晶, 刘光波, 陈鑫, 李文震, 姜鲁华. 通过调节钛氧化物界面水结构驱动光电催化海水选择性氧化产氧[J]. 催化学报, 2025, 72(5): 154-163. |
[4] | 孙静涵, 许峥嵘, 刘邓, 孔爱国, 张其春, 刘睿. 簇状Bi28O32(SO4)10原位Bi晶格畸变增强电催化CO2还原为甲酸[J]. 催化学报, 2025, 72(5): 199-210. |
[5] | 李思明, 孙恩样, 魏鹏飞, 赵微, 裴随珠, 陈颖, 杨洁, 陈绘丽, 尹熙, 王旻, 李亚伟. 浸渍离子液体于多孔Fe-N-C电催化剂以改善聚合物电解质燃料电池电极动力学与质量传输[J]. 催化学报, 2025, 72(5): 277-288. |
[6] | 曹玉峰, 向腊, Nikodinovic-Runic Jasmina, Maslak Veselin, 金建明, 梁朝宁, 唐双焱. 提升未预处理聚对苯二甲酸乙二酯的酶法降解效率[J]. 催化学报, 2025, 71(4): 375-389. |
[7] | 区维韬, 叶莹丹, 张艺濒, 赵怀远, 杜玮辰, 侯昭胤. 废弃PET化学升级为DMCD的缺陷型磺酸化Ru/UiO-66def-SO3H催化剂[J]. 催化学报, 2025, 71(4): 363-374. |
[8] | 黄渝, 邹磊, 黄远标, 曹荣. 光、电、光电催化甲烷转化至醇类物质[J]. 催化学报, 2025, 70(3): 207-229. |
[9] | 成雪峰, 刘青, 孙启孟, 董慧龙, 陈冬赟, 郑莹, 徐庆锋, 路建美. 相邻Ni位点近邻电子效应增强Cu位点加氢和脱氧匹配度促进硝酸盐电还原产氨[J]. 催化学报, 2025, 70(3): 285-298. |
[10] | 赵东林, 周科宇, 詹丽, 樊光银, 龙艳, 宋术岩. Er掺杂调控CoP活性位点的电子结构促进亚硝酸盐电还原合成氨[J]. 催化学报, 2025, 70(3): 299-310. |
[11] | 刘京, 马贤迪, 卢政汉, 申东元, 赵阿雅, 韩晸宇, 龙剑平, 周震, 焦梦改, 李国承, 赵恩爱. 靶向构筑高性能单原子铂基氢析出反应电催化剂[J]. 催化学报, 2025, 69(2): 259-270. |
[12] | 蒋元元, 张妍, 刘梦梦, 刘璐璐, 陈红, 叶盛. 双电荷传输媒介促进赤铁矿光阳极的电荷转移实现高效光电催化水分解[J]. 催化学报, 2025, 69(2): 75-83. |
[13] | 陈明星, 杜子翯, 刘念, 李慧杰, 齐静, 上官恩波, 李晶, 曹嘉豪, 杨树姣, 张伟, 曹睿. 阴阳离子调节策略激活晶格氧促进析氧性能[J]. 催化学报, 2025, 69(2): 282-291. |
[14] | 刘锡来, 仲伟, 靳雨帆, 王天娇, 肖雪, 陈沛, 陈煜, 艾轩. 钯铂双金属烯用于低能耗5-羟甲基糠醛电化学氢化[J]. 催化学报, 2025, 69(2): 241-248. |
[15] | 崔嘉轶, 余新涛, 李学瑶, 余建敏, 彭立山, 魏子栋. M-N-C单原子催化剂自旋调控及其电催化应用研究进展[J]. 催化学报, 2025, 69(2): 17-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||