催化学报 ›› 2026, Vol. 80: 38-58.DOI: 10.1016/S1872-2067(25)64834-0

• 综述 • 上一篇    下一篇

电化学二氧化碳还原中的碱阳离子效应

向家奇a, 陈立妙a, 陈善勇a,b,*(), 刘又年a,*()   

  1. a中南大学化学化工学院, 微纳材料界面科学湖南省重点实验室, 湖南长沙 410083
    b暨南大学环境学院, 广东省环境污染与健康重点实验室, 广东广州 511443
  • 收稿日期:2025-06-20 接受日期:2025-08-06 出版日期:2026-01-05 发布日期:2026-01-05
  • 通讯作者: 陈善勇,刘又年
  • 基金资助:
    国家自然科学基金(22308387);国家自然科学基金(22238013);湖南省科技计划(2019TP100);湖南省科技计划(12019JJ50758);广东基础与应用基础研究基金(2023A1515011935);中南大学中央高校基本研究经费

Alkali cation effects in electrochemical carbon dioxide reduction

Jiaqi Xianga, Limiao Chena, Shanyong Chena,b,*(), You-Nian Liua,*()   

  1. aHunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
    bGuangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
  • Received:2025-06-20 Accepted:2025-08-06 Online:2026-01-05 Published:2026-01-05
  • Contact: Shanyong Chen, You-Nian Liu
  • About author:Shanyong Chen obtained his Ph.D. degree from Nanjing University in 2020. He is currently an associate professor in the College of Chemistry and Chemical Engineering of Central South University. His research focuses on the design of efficient energy catalytic materials, the exploration of catalytic reaction mechanisms, and the development and application of new green catalytic processes and devices.
    You-Nian Liu obtained his Ph.D. degree from Central South University in 2002. He is currently a professor at the College of Chemistry and Chemical Engineering, Central South University. He is also a council member of the Chemical Industry and Engineering Society of China. His current research interests focus on the design and application of catalytic materials and the development of catalytic nanomaterials for immunomodulation.
  • Supported by:
    National Natural Science Foundation of China(22308387);National Natural Science Foundation of China(22238013);Hunan Provincial Science and Technology Plan Project(2019TP100);Hunan Provincial Science and Technology Plan Project(12019JJ50758);Guangdong Basic and Applied Basic Research Foundation(2023A1515011935);Fundamental Research Funds for the Central Universities of Central South University

摘要:

近几十年来, 化石燃料的持续消耗导致了二氧化碳排放量增加, 加剧了以温室效应为代表的环境问题, 因此开发高效二氧化碳捕获和利用技术尤为迫切. 电化学二氧化碳还原反应已成为将二氧化碳转化为高附加值化学品的极具应用前景的策略. 早在上世纪六十年代, 研究人员就发现电解液中的碱阳离子对电化学二氧化碳还原反应起促进作用. 得益于先进表征技术的发展和在分子水平上对反应界面催化机理的深入理解, 最近研究深入揭示了碱阳离子在电化学二氧化碳还原反应中的关键作用, 包括增强催化反应活性和调节产物选择性. 尽管取得了这些进展, 但关于碱金属阳离子究竟如何影响电催化反应过程以及碱阳离子效应的关键决定因素仍然存在争议.

目前关于碱阳离子影响的研究大多集中在关联催化反应性能与定性光谱表征, 或理想化电极界面微环境和简化双电层的计算研究, 主要关注碱阳离子的浓度和类型等变量对电化学二氧化碳还原反应的影响, 而更深层次的碱阳离子的分布方式对界面物理化学性质、反应动力学和热力学的影响研究尚缺乏, 催化反应性能与碱阳离子之间的本质定性关系, 即碱阳离子效应的物理化学起源尚不明确. 因此, 本文首先总结了现代电双层理论的最新进展, 并阐明了碱阳离子在反应界面上的三种不同的分布方式, 对应于三种碱阳离子在界面的吸附模式, 包括静电吸附、特异性吸附和准特异性吸附, 并讨论了体系变量, 如离子半径、反应电位等对碱阳离子吸附模式的影响和不同吸附模式对电化学二氧化碳还原反应起特定作用的机制, 明确了碱阳离子的物理化学起源问题. 随后系统地总结了这些阳离子在不同电解质体系中作用的具体机制. 在碱性介质中, 碱阳离子可以促进C−C偶联反应, 实现乙烯、乙醇等高附加值产品的高产率和选择性. 在中性介质中, 碱阳离子可以调节界面的pH值、优化界面的氢键网络、促进电化学二氧化碳还原反应的动力学、稳定反应中间体的吸附和促进C−C偶联. 在酸性介质中, 碱阳离子主要调制界面电场、调控界面水的结构、抑制水合氢离子的迁移并对电化学二氧化碳还原反应动力学产生影响. 此外, 还总结了与碱阳离子类似的含氮有机阳离子等在调节电化学二氧化碳还原反应的作用, 阐述其在电化学二氧化碳还原反应中协助或代替碱阳离子的潜力.

最后, 基于碱阳离子效应的系统理解, 本文提出了碱阳离子效应的未来研究基本观点与展望, 包括阐明碱阳离子在所应用的电催化体系中的分布模式、利用原位光谱法揭示碱阳离子对界面性质的影响和探究碱阳离子在工业反应装置中的作用, 为下一代先进的电化学二氧化碳还原电解系统的合理设计提供重要参考.

关键词: 电催化, 二氧化碳还原反应, 碱阳离子效应, 电极界面分布, 吸附模式

Abstract:

In recent decades, the unabated consumption of fossil fuels has resulted in a sustained increase in carbon dioxide emissions, exacerbating environmental challenges typified by the greenhouse effect, which has underscored the urgent imperative to develop highly efficient carbon dioxide capture and utilization technologies. The electrocatalytic carbon dioxide reduction reaction (eCO2RR) has emerged as a promising strategy for the conversion of CO2 into high-value-added chemical commodities. Recent investigations have demonstrated that alkali cations played a pivotal role in eCO2RR, encompassing enhancements in catalytic activity and modulations of product selectivity. Despite these advancements, how exactly the alkali cations affect the electrocatalytic reaction process and the key determinants of alkali cation effects remain subjects of ongoing debate. We analyzed current research on the effects of alkali cations, in which the concentration and type of alkali cations were generally correlated with eCO2RR performance. However, the distribution of alkali cations at the electrode interface is often overlooked. In this study, we first conclude recent advancements in electric double layer theory and elucidate three distinct modes of alkali cation distribution at the electrode-electrolyte interface. Subsequently, we systematically summarize the specific mechanisms through which these cations operate in different electrolyte systems. Furthermore, we propose fundamental perspectives for future investigations into alkali cation effects, aiming to provide guiding principles for the rational design of next-generation advanced eCO2RR electrolysis systems.

Key words: Electrocatalysis, Carbon dioxide reduction reaction, Alkali cation effects, Electrode interfacial distribution, Adsorption mode