催化学报 ›› 2025, Vol. 78: 192-201.DOI: 10.1016/S1872-2067(25)64811-X

• 论文 • 上一篇    下一篇

实际可降解塑料废弃物中聚乳酸的催化醇解: 反应物调控策略

何畅a,1, 郭振博b,1, 汪致均a,1, 纪毅c, 李麟瑞a, 邱鑫a, 刘卓a, 董召文a,*(), 侯广进c, 王蒙b,*(), 张帆a,*()   

  1. a四川大学化学学院, 绿色化学与技术教育部重点实验室, 四川成都 610064
    b北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100091
    c中国科学院大连化学物理研究所, 能源材料化学协同创新中心, 大连洁净能源国家实验室, 催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2025-06-20 接受日期:2025-07-28 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: dongzhaowen@scu.edu.cn (董召文), fanzhang@scu.edu.cn (张帆), m.wang@pku.edu.cn (王蒙).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFC3903200);国家重点研发计划(2021YFA1501700);国家自然科学基金(22272114);国家自然科学基金(22472004);四川大学基本科研业务费专项资金(2022SCUNL103);北京市自然科学基金(Z240029);四川大学百人计划基金(20822041E4079)

Reactant-modulated catalytic alcoholysis of polylactic acid from real-life biodegradable plastic waste

Chang Hea,1, Zhenbo Guob,1, Zhijun Wanga,1, Yi Jic, Linrui Lia, Xin Qiua, Zhuo Liua, Zhaowen Donga,*(), Guangjin Houc, Meng Wangb,*(), Fan Zhanga,*()   

  1. aNational Engineering Laboratory of Eco-Friendly Polymeric Materials, Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
    bBeijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100091, China
    cState Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2025-06-20 Accepted:2025-07-28 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: dongzhaowen@scu.edu.cn (Z. Dong), fanzhang@scu.edu.cn (F. Zhang), m.wang@pku.edu.cn (M. Wang).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2023YFC3903200);National Key R&D Program of China(2021YFA1501700);National Science Foundation of China(22272114);National Science Foundation of China(22472004);Fundamental Research Funds from Sichuan University(2022SCUNL103);Beijing Natural Science Foundation(Z240029);Funding for Hundred Talent Program of Sichuan University(20822041E4079)

摘要:

在现代生活中, 塑料成为不可或缺的材料, 尤其是聚酯类塑料如: 聚对苯二甲酸乙二醇酯、聚碳酸酯等, 每年生产量达到数百万吨. 然而, 大多数聚酯在自然界中难以降解, 导致回收率低, 造成严重的环境污染. 因此, 开发有效的塑料化学回收和再利用技术显得尤为重要. 醇解是一种有效的回收聚酯的方法, 催化剂多采用金属醋酸盐、氧化物和有机碱等, 其中有机碱因其经济性和无金属残留而备受青睐. 然而, 现有催化体系中有机碱催化醇解的反应机制尚未阐明, 导致高效醇解催化剂的设计面临挑战.

本文提出了一种基于底物预活化的催化醇解策略: 通过预先混合甲醇、聚乳酸(PLA)与有机碱催化剂1,5,7-三氮杂二环[4.4.0]癸-5-烯(TBD), 可显著调变PLA的醇解反应速率. 实验结果表明, TBD预先混合PLA的醇解速率较慢. ¹H核磁共振证实预混合过程中, TBD可促使PLA发生解聚, 而无需外加甲醇参与. 扩散排序谱分析进一步显示, 加入PLA后部分TBD衍生组分的扩散系数显著降低, 且与PLA片段扩散系数趋同. 该现象表明TBD分子与PLA片段间形成了化学键合, 导致二者以复合体形式扩散. 高分辨质谱直接检测到酰基-TBD加合物的生成, 为醇解反应机制提供关键证据. 在甲醇预混合过程中, 红外光谱证实TBD诱导了甲醇O-H键的显著极化. Overhauser效应谱(2D NOESY)进一步观测到TBD中可交换质子与甲醇O-H基团间的空间相关性, 确证二者存在极化作用. 动力学同位素实验揭示该过程生成了双氢复合中间体. 该中间体展现出突破性的醇解活性: 可在-40 oC的超低温条件下解聚PLA, 且表观活化能低至31.9 kJ·mol-1 (远低于常规催化体系). 通过密度泛函理论计算系统揭示了预混合策略对反应路径能垒的调控机制. 以乙酸乙酯为PLA模型分子, 计算表明, 预混合酯路径中, TBD需先与酯形成加合物, 再与甲醇反应(反应能垒29.8 kcal/mol); 而预混合甲醇路径则通过双氢中间体直接进攻酯基, 反应能垒显著降低至23.4 kcal/mol. 基于上述机理认知, 我们还探究了不同聚酯的溶解性和反应性, 并开发了一种具有原位紫外监测的连续进料反应系统, 在室温下实现了真实PLA塑料废物(100 g)几乎完全转化为乳酸甲酯(ML = 120 g, 纯度94.4%).

综上, 本文证明聚乳酸或甲醇与TBD预混合的顺序对催化醇解反应的效率至关重要. 研究表明, TBD在与PLA或甲醇预混合过程中会形成不同的中间体, 进而调控醇解反应速率. 基于TBD与甲醇的预混合策略对PLA解聚的有效性, 在室温下通过连续流反应器实现了PLA大规模解聚为单体. 该策略有助于揭示聚酯溶剂解机理, 为塑料回收领域提供更多的见解和机会.

关键词: 反应物调制, 聚乳酸, 有机碱, 醇解, 塑料回收

Abstract:

Alcoholysis is one of the most effective methods for recycling polyester plastics. While many researchers claim that both alcohol and polymer reactants are activated simultaneously in the alcoholysis reaction, more reliable experimental evidence is needed to fully understand the process, and the catalytic mechanism remains elusive. To address this issue, we proposed a reactant-modulated catalytic depolymerization strategy involving a pre-mixing of alcohol or polylactic acid (PLA) with an organic base catalyst. Through systematic experimental and theoretical investigations, we have confirmed that different intermediates are formed during pre-mixing the catalyst with PLA or methanol, which can either slow down or accelerate the subsequent alcoholysis reaction. By employing the methanol-modulated depolymerization technique, we successfully achieved PLA alcoholysis at temperatures as low as -40 °C. We further investigated the solubility and reactivity of different polyesters, including PET, PC, PBS, PBAT, PCL, and PLA, revealing an efficient recycling method for PLA. By optimizing reaction conditions in a continuous flow reactor, we recovered 127.3 g of methyl lactate from 100 g of plastic cups in just 4 h at room temperature. These findings greatly improve our grasp of polyester solvolysis processes and create new opportunities within the plastics sector recycling.

Key words: Reactant-modulated, Polylactic acid, Organic base, Alcoholysis, Plastic recycling