催化学报 ›› 2025, Vol. 78: 182-191.DOI: 10.1016/S1872-2067(25)64802-9

• 论文 • 上一篇    下一篇

耐热MHET水解酶的计算重设计及其作为endo-PETase在促进PET解聚中的作用

刘晓萌a,b,1, 陈泽华a,1, 刘欣悦a, 朱彤a, 孙瑨原a, 李春立c,d,*(), 崔颖璐a,d,e,*(), 吴边a,f,*()   

  1. aAIM中心, 北京化工大学生命科学与技术学院, 中国科学院微生物研究所, 北京 100101
    b中国科学院大学存济医学院, 北京 100101
    c中国科学院微生物研究所, 北京 100101
    d微生物多样性与资源创新利用全国重点实验室, 北京 100101
    e合成生物制造元件智能创制北京市重点实验室, 北京 100101
    f绿色生物制造全国重点实验室, 北京 100101
  • 收稿日期:2025-04-26 接受日期:2025-07-01 出版日期:2025-11-18 发布日期:2025-10-14
  • 通讯作者: *电子信箱: licl@im.ac.cn (李春立), cuiyinglu@im.ac.cn (崔颖璐), thebianwu@outlook.com (吴边).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFC3905000);国家自然科学基金(32170033);国家自然科学基金(32225002);国家自然科学基金(32422001);中国科学院战略先导研究专项(XDB0810000);中国科学院生物资源项目(KFJ-BRP-009);北京市科技计划项目(Z241100007724009);中国科学院生物资源项目(KFJ-BRP-017-58);中国科学院青年创新促进会(2022086)

Computational redesign of a thermostable MHET hydrolase and its role as an endo-PETase in promoting PET depolymerization

Xiaomeng Liua,b,1, Zehua Chena,1, Xinyue Liua, Tong Zhua, Jinyuan Suna, Chunli Lic,d,*(), Yinglu Cuia,d,e,*(), Bian Wua,f,*()   

  1. aAIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    bCunji Medical College, University of Chinese Academy of Sciences, Beijing 100101, China
    cInstitute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
    dState Key Laboratory of Microbial Diversity and Innovative Utilization, Beijing 100101, China
    eBeijing Key Laboratory of Genetic Element Biosourcing & Intelligent Design for Biomanufacturing, Beijing 100101, China
    fState Key Laboratory of Green Manufacturing, Beijing 100101, China
  • Received:2025-04-26 Accepted:2025-07-01 Online:2025-11-18 Published:2025-10-14
  • Contact: *E-mail: licl@im.ac.cn (C. Li), cuiyinglu@im.ac.cn (Y. Cui), thebianwu@outlook.com (B. Wu).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2023YFC3905000);National Natural Science Foundation of China(32170033);National Natural Science Foundation of China(32225002);National Natural Science Foundation of China(32422001);Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0810000);Biological Resources Program (KFJ-BRP-009, KFJ-BRP-017-58) from the Chinese Academy of Sciences, Beijing Municipal Science & Technology Project, China(Z241100007724009);Youth Innovation Promotion Association CAS(2022086)

摘要:

随着塑料污染问题日益严峻和循环经济战略的持续推进, 酶法塑料解聚与再生技术因其绿色、高效、环境友好等特点受到广泛关注, 尤其在聚对苯二甲酸乙二醇酯(PET)的回收再利用方面展现出巨大的潜力. 近年来, 尽管多种高温高效的PET水解酶不断涌现, 但仍面临诸多问题, 如中间产物引发的产物抑制效应、降解终产物组成复杂等问题, 严重制约了PET产物的高值利用. 因此, 开发可在高温下协同降解中间产物的水解酶, 构建高效、产物单一的塑料酶解体系, 对于缓解产物抑制、简化产物分离流程, 推动酶法再生走向产业化具有重要意义.

本文围绕PET酶解过程中的关键中间产物对苯二甲酸单(2-羟乙基)酯(MHET)积累问题, 采用课题组自主开发的蛋白质计算稳定性设计策略——greedy accumulated strategy for protein engineering(GRAPE), 以天然MHET水解酶(IsMHETase)为模板, 构建了耐热突变体DuraMHETase (A66P/S136E/T159V/M192F/T328R/A330K/A333R/Q410F/S413N/T434D/A501I/ A509K/S561V). DuraMHETase在与底物结合状态下的表观熔融温度达72 °C, 在60 °C反应条件下的总转换数(TTN)较野生型收获了6倍的提升, 展现出较好的热稳定性与催化效率. 将DuraMHETase与多种高效PET水解酶联合使用, 均显著促进了PET降解效率; 进一步构建的DuraMHETase-TurboPETase融合蛋白不仅提升了整体降解性能, 还实现了高达99%以上的TPA终产物纯度. 为探究热稳定性提升的结构基础, 本文通过分子动力学模拟分析了突变对蛋白质构象的影响, 发现优化的静电相互作用、更紧密的疏水核心堆积以及未折叠区域构象熵的降低, 是增强稳定性的主要贡献因素. 同时, 本文在验证该酶具有外切型PET酶(exo-PETase)活性的基础上, 首次观察到其对环状五聚PET(PET5)及未预处理无定形PET膜的降解能力, 揭示该酶兼具内切型PET酶(endo-PETase)与外切型PET酶(exo-PETase)活性. 进一步分析发现, endo-PETase活性在此类酶中具有一定普遍性, 提示其在PET酶法协同降解中的潜在重要作用.

综上, 本文基于计算设计成功获得了具备良好热稳定性的PET降解协同酶DuraMHETase, 并通过构建融合酶体系有效缓解了产物抑制, 提升了酶法解聚过程的产物纯度与整体效率. 同时, 首次揭示了MHETase的endo-PETase活性, 拓展了其功能认识, 为多功能协同酶体系的构建提供了新思路和理论基础. 展望未来, 基于多功能酶的理性设计与高效协同, 或将进一步推动酶法塑料再生技术向绿色、高效及工业化方向发展.

关键词: 酶的计算重设计, 生物催化, 塑料降解, 酶机理, 热稳定性

Abstract:

Biotechnological strategies for plastic depolymerization and recycling have emerged as transformative approaches to combat the global plastic pollution crisis, aligning with the principles of a sustainable and circular economy. Despite advances in engineering PET hydrolases, the degradation process is frequently compromised by product inhibition and the heterogeneity of final products, thereby obstructing subsequent PET recondensation and impeding the synthesis of high-value derivatives. In this work, we utilized previously devised computational strategies to redesign a thermostable DuraMHETase, achieving an apparent melting temperature of 72 °C in complex with MHET and a 6-fold higher in total turnover number (TTN) toward MHET than the wild-type enzyme at 60 °C. The fused enzyme system composed of DuraMHETase and TurboPETase demonstrated higher efficiency than other PET hydrolases and the separated dual enzyme systems. Furthermore, we identified both exo- and endo-PETase activities in DuraMHETase, whereas the endo- activity was previously unobserved at ambient temperatures. These results expand the functional scope of MHETase beyond mere intermediate hydrolysis, and may provide guidance for the development of more synergistic approaches to plastic biodepolymerization and recycling.

Key words: Computational enzyme redesign, Biocatalysis, Plastic degradation, Enzyme mechanism, Thermostability