催化学报 ›› 2025, Vol. 72: 4-23.DOI: 10.1016/S1872-2067(25)64659-6

• 综述 • 上一篇    下一篇

工程化金属酶参与的卡宾、氮宾转移非天然生物催化反应

潘文进a,1, 范鑫龙a,1, 蒋宛彤b, 辛思蕊c, 王宁致d, 王骞e, 余克洋a, 任鑫坤a,*()   

  1. a南京大学现代工程与应用科学学院, 固体微结构物理国家重点实验室, 江苏南京 210023
    b南京大学生命科学学院, 江苏南京 210023
    c南京大学化学化工学院, 江苏南京 210023
    d南京大学匡亚明学院, 江苏南京 210023
    e南京大学环境学院, 江苏南京 210023
  • 收稿日期:2024-11-05 接受日期:2025-01-14 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: xinkunren@nju.edu.cn (任鑫坤).
  • 作者简介:1共同第一作者
  • 基金资助:
    江苏省自然科学基金(BK20232017);江苏省杰出青年科学基金(BK20230022)

Engineering metalloenzymes for new-to-nature carbene and nitrene transfer biocatalysis

Wenjin Pana,1, Xinlong Fana,1, Wantong Jiangb, Sirui Xinc, Ningzhi Wangd, Qian Wange, Keyang Yua, Xinkun Rena,*()   

  1. aCollege of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, Jiangsu, China
    bSchool of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
    cSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China
    dKuang Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
    eSchool of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
  • Received:2024-11-05 Accepted:2025-01-14 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: xinkunren@nju.edu.cn (X. Ren).
  • About author:Xinkun Ren (College of Engineering and Applied Sciences, Nanjing University) received his B.A. degree from Kuang Yaming Honors School, Nanjing University (P. R. China) in 2012, and Ph.D. degree from University of Oxford (United Kingdom) in 2018. He carried out his Postdoctoral research at University of Rochester from 2018 to the end of 2021. Since then, he has been working in College of Engineering of Applied Sciences (P. R. China). He is a recipient of the National Natural Science Foundation's Overseas Outstanding Youth Program (2022) and Distinguished Young Scholar of Natural Science Foundation of Jiangsu Province (2023). His current research focuses on new synthetic strategies, mechanisms, and applications of biocatalysts, aiming to overcome the limitations of natural evolution. He has published more than 20 peer-reviewed papers and served as primary inventor in filling over 40 invention patents.
    First author contact:1These authors contributed equally.
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20232017);Science Fund for Distinguished Young Scholars of Jiangsu Province(BK20230022)

摘要:

近年来, 生物催化在解决化学合成中的复杂挑战方面展现出强大的潜力. 作为一种绿色、高效的催化策略, 生物催化以生物酶为工具, 通过独特的催化机制和特异的化学/区域/立体选择性, 在制药、化工和材料科学领域广泛应用. 目前, 生物酶的功能创新已成为生物催化领域的前沿热点, 通过工程化策略对生物酶进行改造进而赋予其非天然催化功能, 以高效、精准的方式催化复杂反应, 有望推动药物研发、绿色化学、合成生物学等领域的发展. 本文系统总结了金属酶参与的卡宾和氮宾转移反应的最新进展, 探讨了其催化机制和蛋白质工程改造方法的设计思路, 并综述了其在合成新型化合物以及满足药物化学需求方面的应用前景.

本文从金属酶催化卡宾和氮宾转移非天然生物催化反应的发展历史入手, 总结了金属酶催化卡宾和氮宾转移反应的主要反应类型, 包括环丙烷化、卡宾的杂原子-氢键(Y-H)插入和碳氢键(C-H)插入、Doyle-Kirmse反应、醛烯烃化; 氮宾的C-H插入、氮宾的氮杂环丙烷化及叠氮-醛转化等. 这些反应不仅在化学合成领域具有重要价值, 还为设计复杂化合物提供了灵活的工具. 研究者们通过对金属蛋白的蛋白质骨架进行工程化设计, 开发了多种具有不同反应活性和立体选择性的蛋白酶催化剂. 这些催化剂以铁血红素等金属辅酶依赖性的蛋白质为骨架, 通过活性中心关键氨基酸的迭代突变, 在手性催化合成、区域选择性反应以及复杂分子的定制化合成中显示了卓越性能, 展示出蛋白质工程技术在增强金属酶催化能力、扩大其非天然反应应用范围等方面的优势. 在实验室制备规模的合成中, 这些新型催化剂表现出优异的效率和稳定性, 为药物前体、功能性分子以及其他化学产品的大规模生产提供了新思路. 这些研究成果不仅展示了金属酶在生物技术领域的实用性, 也进一步巩固了其作为催化剂的重要地位.

展望未来, 随着蛋白质工程技术和生物催化理论的持续发展, 金属酶在非天然化学反应中的应用潜力将不断被挖掘. 通过开发更加高效、稳定和多功能的金属酶催化剂, 生物催化在化学、药物和材料科学等领域的广泛应用将得到进一步推动. 工程化金属催化卡宾和氮宾转移的非天然反应为生物催化的未来发展奠定了坚实基础, 也为研究者提供了宝贵的理论与实践参考.

关键词: 金属酶, 生物催化, 卡宾, 氮宾, 非天然反应

Abstract:

Biocatalysis, which involves using enzymes to address synthetic challenges of significance to humans, has rapidly developed into a pivotal technology for chemical innovation. Over the past decade, there has been a notable increase in the use of metalloproteins as catalysts for abiotic, synthetically valuable carbene and nitrene transfer reactions. This trend highlights the adaptability of protein-based catalysts and our growing ability to harness this potential for novel enzyme chemistry. This review focuses on the most recent advancements in metalloenzyme-catalyzed carbene and nitrene transfer reactions, including cyclopropanation, carbene Y-H and C-H insertions, Doyle-Kirmse reactions, aldehyde olefinations, nitrene azide-to-aldehyde conversions, and nitrene C-H insertion. A variety of protein scaffolds have been engineered to offer varied levels of reactivity and selectivity towards pharmaceutically relevant compounds. The application of these new catalysts in preparative-scale synthesis underscores their emerging biotechnological significance. Furthermore, insights into key intermediate and determining factors in stereochemistry are offering valuable guidance for engineering metalloproteins, thereby expanding the scope and utility of these non-natural activities.

Key words: Metalloenzyme, Biocatalysis, Carbene, Nitrene, Non-natural reaction