催化学报 ›› 2026, Vol. 81: 366-379.DOI: 10.1016/S1872-2067(25)64867-4

• 论文 • 上一篇    

采用生物基催化剂甜菜碱进行乙二醇解法回收PET增强的PVC篷布

金在均a,1, 元艺珍a,1, 尹炡勋b, 李炅旻b, 崔乂允a, 金东玄c,d,e(), 金京宪a()   

  1. a 高丽大学校大学院融合生命工学系, 首尔, 韩国
    b LG化学, 首尔, 韩国
    c 庆北大学校食品工学部, 大邱, 韩国
    d 庆北国立大学高级生物融合系, 大邱, 韩国
    e 庆北大学校基础科学融合研究院, 大邱, 韩国
  • 收稿日期:2025-06-18 接受日期:2025-09-19 出版日期:2026-02-18 发布日期:2025-12-26
  • 通讯作者: *电子信箱: khekim@korea.ac.kr (K. Kim),dhkim85@knu.ac.kr (D. Kim).
  • 作者简介:1共同第一作者.

Recycling of PVC tarpaulin reinforced with PET through glycolysis using betaine, a bio-based catalyst

Jae Kyun Kima,1, Yejin Wona,1, Jeonghoon Yoonb, Kyung Min Leeb, Yeyoon Choia, Dong Hyun Kimc,d,e(), Kyoung Heon Kima()   

  1. a Department of Biotechnology, Graduate School, Korea University, Seoul 02841, South Korea
    b LG Chem, Seoul 07336, South Korea
    c School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
    d Department of Advanced Bioconvergence, Kyungpook National University, Daegu 41566, South Korea
    e Institute of Basic Science Convergence, Kyungpook National University, Daegu 41566, South Korea
  • Received:2025-06-18 Accepted:2025-09-19 Online:2026-02-18 Published:2025-12-26
  • Contact: *E-mail: khekim@korea.ac.kr (K. H. Kim),dhkim85@knu.ac.kr (D. H. Kim).
  • About author:1 These authors contributed equally to this work.

摘要:

用聚对苯二甲酸乙二醇酯(PET)纤维增强的聚氯乙烯(PVC)防水布广泛应用于各种工业场景. 然而, 由于难以分离两种不同的塑料, 对回收PVC防水布废料的需求日益增加, 这带来了挑战. 本文探究了通过PET的糖酵解工艺实现回收PVC和PET的可行性. 研磨的PVC防水布经过糖酵解过程, 选择性地将PET纤维解聚成水溶性的对苯二甲酸双(2-羟乙基)酯(BHET), 同时通过过滤去除PVC. 在0.5 wt%甜菜碱作为催化剂的存在下, 在190 °C反应2 h后, PET纤维选择性解聚率达77.6%, 定量产生BHET. 在糖酵解过程中, 由于增塑剂的浸出, PVC的物理外观发生了变化, 但没有观察到PVC聚合物的脱氯或缩短. 有趣的是, PVC中的添加剂, 如CaCO3和CZ稳定剂, 充当糖酵解的催化剂, 从而增强PET的解聚. 当将回收的PVC混合到PVC配方中时, 在辊磨机加工的片材中, 其机械性能和外观保持在每百份树脂中高达40份. 此外, 用作糖酵解溶剂的乙二醇可以重复使用三次, 而无需额外去除BHET. 这项研究为从广泛使用的防水布中同时回收PVC和PET提供了一种具备工业应用潜力的方法.

关键词: 塑料回收, 防水油布, 聚氯乙烯, 聚对苯二甲酸乙二酯, 糖酵解

Abstract:

Polyvinyl chloride (PVC) tarpaulins reinforced with poly(ethylene terephthalate) (PET) fibers are widely used in various industrial applications. However, the increasing demand for recycling PVC tarpaulin waste poses challenges because of the difficulty in separating the two different plastics. In this study, we investigated the possibility of recycling PVC and PET through the glycolysis of PET. The milled PVC tarpaulin underwent a glycolysis process, selectively depolymerizing the PET fibers into water-soluble bis(2-hydroxyethyl) terephthalate (BHET), while the PVC was removed by filtration. The PET fibers were selectively depolymerized by 77.6% after reacting at 190 °C for 2 h in the presence of 0.5% (w/w) betaine as a catalyst, quantitatively yielding BHET. During glycolysis, the physical appearance of the PVC changed because of leaching of the plasticizer, however, no dechlorination or shortening of the PVC polymer was observed. Interestingly, additives in PVC, such as CaCO3 and CZ-stabilizer, act as catalysts for glycolysis, thereby enhancing PET depolymerization. The recovered PVC, when blended into a PVC formulation, maintained its mechanical properties and appearance up to 40 parts per hundred resins in roll-mill-processed sheets. In addition, ethylene glycol, which is used as a solvent in glycolysis, can be reused up to three times without the additional removal of BHET. This study demonstrated an industrially applicable method for simultaneously recycling PVC and PET from widely used tarpaulins.

Key words: Plastic recycling, Tarpaulin, Polyvinyl chloride, Poly(ethylene terephthalate), Glycolysis