催化学报 ›› 2016, Vol. 37 ›› Issue (1): 27-31.DOI: 10.1016/S1872-2067(15)61026-9

• 新型多孔催化材料专栏 • 上一篇    下一篇

三维有序介孔二氧化锰制备及其甲醛催化氧化性能

拜冰阳a,b, 乔琦a,b, 李俊华c, 郝吉明c   

  1. a 中国环境科学研究院环境基准与风险评估国家重点实验室, 北京100012;
    b 中国环境科学研究院国家环境保护生态工业重点实验室, 北京100012;
    c 清华大学环境学院环境模拟与污染控制国家重点联合实验室, 北京100084
  • 收稿日期:2015-05-28 修回日期:2015-07-07 出版日期:2015-12-26 发布日期:2015-12-26
  • 通讯作者: 李俊华, 乔琦
  • 作者简介:李俊华, 乔琦
  • 基金资助:

    国家自然科学基金(21325731, 21221004, 51478241).

Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation

Bingyang Baia,b, Qi Qiaoa,b, Junhua Lic, Jiming Haoc   

  1. a State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
    b Key Laboratory of Eco-Industry of the Ministry of Environmental Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
    c State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
  • Received:2015-05-28 Revised:2015-07-07 Online:2015-12-26 Published:2015-12-26
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21325731, 21221004 and 51478241).

摘要:

空气中的甲醛主要来源于化工、建材、涂料、装潢材料以及机动车尾气.甲醛具有光化学活性,对人体具有致癌致畸作用.高浓度甲醛对人体健康和空气环境危害极大,室内低浓度甲醛对人体也有很大伤害.因此,消除室内、机动车尾气以及工业生产过程中的甲醛非常必要.目前,去除甲醛的方法主要有吸附法、光催化法和催化燃烧法.其中,催化燃烧法具有去除效率高、起燃温度低、适用范围广、设备操作简单以及无二次污染等优点,因而非常适用于去除高浓度和低浓度甲醛.该方法的核心是催化剂的制备和筛选.近年来,用于甲醛催化燃烧的催化剂主要是负载型贵金属和金属氧化物.由于贵金属催化剂成本较高,所以金属氧化物催化剂备受关注.MnO2种类繁多,既包括人工合成的棒状、线状、管状、球状和孔状等形貌,还包括自然界存在的α,β,γ和δ等类型.其中,介孔MnO2因具有较大的比表面积和特殊的孔道而应用于乙醇、甲苯、苯等挥发性有机物的催化氧化反应.目前,尚未见三维(3D)有序介孔MnO2催化氧化甲醛的报道.
本文以合成的3D有序介孔KIT-6分子筛为硬模板剂,采用纳米浇筑法制备出3D有序介孔MnO2材料.为了比较,采用水热法合成了α-MnO2和β-MnO2纳米棒.采用X射线粉末衍射、N2吸附-脱附、透射电子显微镜和X射线能谱(XPS)等方法对催化剂进行了表征.在微型固定床石英管反应器上评价了催化剂催化甲醛氧化活性,采用气相色谱(GC)联接热导检测器(TCD)和质谱检测器(MSD)检测产物和反应物的含量.
表征结果表明,3D-MnO2复制了KIT-6硬模板的三维有序立方对称介孔结构(ia3d),且具有金红石型β-MnO2晶相,属软锰矿,具有较大的比表面积和双孔分布介孔结构,最大孔径分别位于3.7和11.4nm处.3D-MnO2样品具有清晰的孔道结构,而α-MnO2和β-MnO2纳米棒为无孔的一维纳米单晶材料.另外,3D-MnO2表面暴露了较多的(110)晶面,有利于增加表面Mn4+离子.XPS结果证实3D-MnO2表面存在较多的Mn4+离子,这些Mn4+离子为甲醛催化反应提供了丰富的活性位,有利于提高甲醛氧化活性.评价结果表明,3D-MnO2具有良好的低温催化性能,于130℃即可将甲醛完全转化成CO2和H2O;而在同样条件下,α-MnO2纳米棒和β-MnO2纳米棒分别在140和180℃才能完全转化甲醛.3D-MnO2具有良好的甲醛催化性能主要归因于特殊的介孔结构、较大的比表面积和较多的表面Mn4+离子.

关键词: 三维有序材料, 介孔结构, 二氧化锰, 甲醛, 催化氧化

Abstract:

Three-dimensional (3D) ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template. The material was used for catalytic oxidation of HCHO. The material has high surface areas and the mesoporous characteristics of the template, with cubic symmetry (ia3d). It consists of a β-MnO2 crystalline phase corresponding to pyrolusite, with a rutile structure. Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the (110) crystal plane surfaces, with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO. Complete conversion of HCHO to CO2 and H2O was achieved at 130 ℃ on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 ℃, respectively, under the same conditions. The specific mesoporous structure, high specific surface area, and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.

Key words: Three-dimensional ordered material, Mesoporous structure, Manganese oxide, Formaldehyde, Catalytic oxidation