催化学报 ›› 2018, Vol. 39 ›› Issue (8): 1395-1402.DOI: 10.1016/S1872-2067(18)63076-1

• 论文 • 上一篇    下一篇

甲烷氧化偶联:Mn2O3-Na2WO4/SiO2催错MOx(M=Ti,Mg,Ga,Zr)改性及掺杂效应研究

王鹏伟, 张鑫, 赵国锋, 刘晔, 路勇   

  1. 华东师范大学化学与分子工程学院, 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062
  • 收稿日期:2018-02-22 修回日期:2018-03-31 出版日期:2018-08-18 发布日期:2018-07-04
  • 通讯作者: 赵国锋, 路勇
  • 基金资助:

    上海市科委基础重点项目(18JC1412100);国家自然科学基金(21773069,21703069,21473057,U1462129);国家重点基础研究发展计划(973计划,2011CB201403).

Oxidative coupling of methane: MOx-modified (M=Ti, Mg, Ga, Zr) Mn2O3-Na2WO4/SiO2 catalysts and effect of MOx modification

Pengwei Wang, Xin Zhang, Guofeng Zhao, Ye Liu, Yong Lu   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2018-02-22 Revised:2018-03-31 Online:2018-08-18 Published:2018-07-04
  • Contact: 10.1016/S1872-2067(18)63076-1
  • Supported by:

    This work was supported by the Basic Key Project (18JC1412100) from the Shanghai Municipal Science and Technology Commission, the National Natural Science Foundation of China (21773069, 21703069, 21473057, U1462129), and the National Basic Research Program of China (973 program, 2011CB201403) from the MOST of China.

摘要:

甲烷(页岩气、天然气、可燃冰和煤层气的主要成分)是地球上储量巨大的优质能源和高品味的碳氢资源,我国也拥有储量居全球前列的页岩气、可燃冰和煤层气.虽然甲烷经由合成气可以间接转化为乙烯等产品,但工艺流程长以及合成气造气高温、高能耗和高物耗也是不争的事实,这在一定程度上降低了间接合成路线的竞争优势.特别是,甲烷的间接转化需要将本应部分保留于产品的C-H键全部打断生成合成气,然后再在催化剂作用下重组得到烃类产品,故而并不完美.因此,甲烷的直接转化一直是科学家孜孜以求的理想路径,甲烷氧化偶联制乙烯(OCM反应)也再一次引起关注.
目前,Mn2O3-Na2WO4/SiO2是最富有应用前景的催化剂,但其适宜反应温度仍高达800℃以上,极大地制约了其工业化应用.为提高其低温催化性能,本文采用金属氧化物MOx(TiO2,MgO,Ga2O3或ZrO2)对Mn2O3-Na2WO4/SiO2催化剂进行了掺杂改性,利用扫描电子显微镜、N2吸附-脱附等温曲线、X射线衍射、拉曼光谱、电感耦合等离子体原子发射光谱等手段对改性后的催化剂进行了系统表征.结果表明,TiO2掺杂的Mn2O3-Na2WO4/SiO2催化剂在700℃(催化剂床层温度)下,CH4转化率可达23%,同时C2-C3烃类选择性约为73%,且能够稳定运行300h无失活迹象;MnTiO3的形成对提高OCM反应的低温活性和选择性至关重要,本质在于低温(≤ 700℃)化学循环"MnTiO3↔Mn2O3"的形成替代了未改性催化剂的高温(> 800℃)化学循环"MnWO4↔Mn2O3".对于MgO改性的Mn2O3-Na2WO4/SiO2催化剂,其催化性能与未改性催化剂相当,反应过程中Mn2O3与MgO生成了新物相Mg2MnO4;虽然也形成了新的MnWO4↔Mg2MnO4氧化还原循环,但是该循环与MnWO4↔Mn2O3循环类似,需在高温下才可高效进行.对于Ga2O3或ZrO2改性的催化剂,其催化性能低于未改性催化剂,原因在于反应过程中Ga2O3或ZrO2的引入促进了MnWO4物相的生成并对其有稳定作用,反应后的催化剂无论是体相还是表面都只能检测到MnWO4,推测认为a-方石英、Na2WO4和Mn2O3的缺失是导致Ga2O3或ZrO2改性催化剂性能下降的主要原因.

关键词: 甲烷氧化偶联, 低碳烯烃, 乙烯, 氧化物修饰, MnTiO3

Abstract:

Mn2O3-Na2WO4/SiO2 is considered as the most promising catalyst for the oxidative coupling of methane (OCM) process; however, it only has a better catalytic performance over 800℃. To improve its low-temperature performance, an attempt has been made to modify the Mn2O3-Na2WO4/SiO2 catalyst using TiO2, MgO, Ga2O3, and ZrO2. Among the synthesized catalysts, the TiO2-modified Mn2O3-Na2WO4/SiO2 catalyst shows markedly improved low-temperature OCM performance, achieving a high CH4 conversion of ~23% and a good C2-C3 selectivity of ~73% at 700℃ (the catalyst bed temperature), along with promising stability for at least 300 h without signs of deactivation. In comparison with the unmodified Mn2O3-Na2WO4/SiO2 catalyst, the TiO2 modification results in significant improvement in the low-temperature activity/selectivity, whereas the MgO modification has almost no impact and the Ga2O3 and ZrO2 modifications have a negative effect. The X-ray diffraction (XRD) and Raman results reveal that the formation of a MnTiO3 phase and a MnTiO3-dominated catalyst surface is crucial for the improvement of the low-temperature activity/selectivity in the OCM process.

Key words: Oxidative coupling of methane, Light olefins, Ethylene, Oxide modification, MnTiO3