催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1049-1057.DOI: 10.1016/S1872-2067(21)63947-5
王琳琳a, 李欣a, 郝磊端a, 洪崧a, Alex W. Robertsonb, 孙振宇a,c,*()
收稿日期:
2021-07-15
接受日期:
2021-07-15
出版日期:
2022-03-05
发布日期:
2022-03-01
通讯作者:
孙振宇
基金资助:
Linlin Wanga, Xin Lia, Leiduan Haoa, Song Honga, Alex W. Robertsonb, Zhenyu Suna,c,*()
Received:
2021-07-15
Accepted:
2021-07-15
Online:
2022-03-05
Published:
2022-03-01
Contact:
Zhenyu Sun
Supported by:
摘要:
为了促进CO2电化学还原(ECR)制备燃料和高值化学品, 开发高活性、低成本和高选择性催化剂至关重要. 本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂. 并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N2吸附/脱附、元素分析谱、CO2吸附等方法进行表征, 对CuO/Cu-MOF复合材料的组成、形貌和孔结构等进行了系统研究. 结果表明, 超细CuO纳米粒子的尺寸为1.4到3.3 nm, 均匀修饰在二维Cu-BDC MOF表面. 由于其结构中丰富的孔道结构, CuO/Cu-MOF在常压下的CO2吸附量可达5.0 mgCO2 gcat.-1, 明显优于商业CuO纳米颗粒. 进一步在H型电解池、0.1 mol/L KHCO3电解质溶液中研究了CuO/Cu-MOF的ECR性能; 结果表明, 在CO2饱和的0.1 mol/L KHCO3电解质溶液中, 反应产物包括CO, H2, HCOOH和C2H4. 在-1.0至-1.2 V (相对于可逆氢电极, 下同)电势范围内, ECR占主导地位; 生成C2H4的起始电位为-0.85 V, 在-0.9至-1.2 V电势范围内, C2H4是主要产物; 电势高于-0.9 V时, CO和HCOOH是主要产物; 电势低于-0.9 V时, 开始生成CH4, 且其含量随过电势增加而增加. 通过改变材料合成时的前驱体配比、配体种类和反应温度等可调节CuO/Cu-MOF催化剂对ECR产物的活性和选择性, 当对苯二甲酸:硝酸铜摩尔比为3:1、温度为100 °C时, 制得的CuO/Cu-MOF可在-1.1 V电势下将CO2还原为C2H4, 其法拉第效率可达50.0%, 显著优于许多文献报道的Cu基电催化剂以及所合成的纯Cu-MOF和纯CuO, 其在相同电解条件下生成C2H4的法拉第效率分别为37.6%和25.5%. 此外, 生成C2H4的几何分电流密度约为7.0 mA cm-2, 生成速率为21.0 μmol mgcat.-1h-1, 阴极能量效率达到27.7%. 催化剂的稳定性测试结果表明, 在连续电解10 h后, C2H4的法拉第效率仍保持在45.0%以上. 进一步的机理研究表明, CuO/Cu-MOF复合材料中二维金属铜有机框架主体和超细CuO纳米颗粒在ECR反应过程中可协同实现对CO2的吸附和活化, 促进C-C耦合, 从而高选择性生成C2H4. 本文为提高ECR生成C2H4的选择性和活性提供了有效策略.
王琳琳, 李欣, 郝磊端, 洪崧, Alex W. Robertson, 孙振宇. 超细氧化铜纳米颗粒修饰二维金属有机框架协同增强二氧化碳电化学还原生成乙烯[J]. 催化学报, 2022, 43(4): 1049-1057.
Linlin Wang, Xin Li, Leiduan Hao, Song Hong, Alex W. Robertson, Zhenyu Sun. Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemicgal CO2 reduction to ethylene[J]. Chinese Journal of Catalysis, 2022, 43(4): 1049-1057.
Fig. 1. (a) Schematic of the synthesis of CuO/Cu-MOF composite; (b) XRD patterns of CuO/Cu-MOF and simulated Cu-BDC MOF; (c) FT-IR, (d) Cu 2p XPS, and (e) O 1s XPS spectra of CuO/Cu-MOF; (f) N2 adsorption-desorption profiles of CuO/Cu-MOF; (g) CO2 desorption curves of CuO/Cu-MOF and commercial CuO [CuO (coml)].
Fig. 2. Low-magnification (a) and high-magnification (b) HAADF-STEM images of CuO/Cu-MOF composite. EDS elemental maps of Cu (c), O (d), C (e), and N (f) over the region depicted in image (b), along with corresponding EDS spectrum (g). (h,i,k) High-resolution STEM images of CuO/Cu-MOF; The inset in (i) shows size distribution of CuO NPs; (j) Transformed STEM image of (k). (l,m) Enlarged STEM images of the areas enclosed in the dashed squares in (k). (n,o) Corresponding FFT patterns of the regions shown in (l and m).
Fig. 3. (a) LSV profiles of CuO/Cu-MOF in Ar- (black dotted line) or CO2- (red solid line) saturated 0.1 mol/L KHCO3 solution with a scan rate of 5.0 mV s?1; (b) ECR FE (bar) and overall current density (ball) against applied potential over CuO/Cu-MOF electrode in CO2-purged 0.1 mol/L KHCO3; (c) ECR FE (bar) and overall current density (ball) of CuO/Cu-MOF against mole ratio of 1,4-BDC and Cu(NO3)2·3H2O; (d) ECR FE (bar) and partial current density (ball) of CuO/Cu-MOF obtained with distinct copper precursor types together with Cu-MOF and CuO. Data in Fig. 3(b)?(d) are represented as mean ± SE.
Fig. 4. (a) ECR FE (bar) and C2H4 partial geometric current density (ball) of CuO/Cu-MOF obtained at varying conditions (solvothermal temperature, linker type), commercial Cu(OH)2, 1,4-BDC, CuO, Cu2O, and Cu powder; (b) ECR FE (bar) and C2H4 geometric current density (ball) of CuO/Cu-MOF in various electrolytes. The concentration of anions in various mixed electrolytes is 0.1 mol/L while the concentration of K+in all the cases is 0.2 mol/L. The cathodic potential applied is -1.1 V. Data are represented as mean ± SE.
Fig. 5. C2H4 FEs (a) and C2H4 EEs (b) of CuO/Cu-MOF and previously demonstrated Cu-based materials (summarized in Table S1) in an H-type cell; (c) Tafel plots for C2H4 production of CuO/Cu-MOF, neat Cu-MOF, and CuO; (d) Nyquist curves with corresponding fitting profiles for CuO/Cu-MOF, CuO, and Cu-MOF. The inset depicts the equivalent circuit used for fitting the data, where RS shows the combination of the resistance of electrodes and electrolyte, CPE and Rct represent the capacitance and charge transfer resistance of working electrode-electrolyte interface, respectively. (e) C2H4 FEs (bar) and corresponding partial current densities (ball) for CuO/Cu-MOF during cycles at -1.1 V with an interval of 1.0 h in CO2- and Ar-purged 0.1 mol/L KHCO3. Data are represented as mean ± SE. (f) Current density and C2H4 FE as function of time for electrolysis at a controlled cathodic voltage of -1.1 V. The mole ratio of 1,4-BDC and Cu(NO3)2·3H2O and solvothermal temperature used for the synthesis of CuO/Cu-MOF are 3:1 and 100.0 °C unless specified otherwise.
[1] | Q. Fan, M. L. Zhang, M. W. Jia, S. Z. Liu, J. S. Qiu, Z. Y. Sun, Mater. Today Energy, 2018, 10, 280-301. |
[2] |
H. C. Tao, Q. Fan, T. Ma, S. Z. Liu, H. Gysling, J. Texter, Z. Y. Sun, Prog. Mater. Sci., 2020, 111, 100637.
DOI URL |
[3] | Y. Zhou, N. Han, Y. Li, Acta Phys.-Chim. Sin., 2020, 36, 2001041. |
[4] |
C. Yan, L. Lin, G. X. Wang, X. H. Bao, Chin. J. Catal., 2019, 40, 23-27.
DOI URL |
[5] |
J. Shao, Y. Wang, D. Gao, K. Ye, Q. Wang, G. Wang, Chin. J. Catal., 2020, 41, 1393-1400.
DOI URL |
[6] |
G. Li, Y. Qin, Y. Wu, L. Pei, Q. Hu, H. Yang, Q. Zhang, J. Liu, C. He, Chin. J. Catal., 2020, 41, 830-838.
DOI URL |
[7] |
H. Bao, Y. Qiu, X. Peng, J.-A. Wang, Y. Mi, S. Zhao, X. Liu, Y. Liu, R. Cao, L. Zhuo, J. Ren, J. Sun, J. Luo, X. Sun, Nat. Commun., 2021, 12, 238.
DOI URL |
[8] |
Y. Mi, Y. Qiu, Y. Liu, X. Peng, M. Hu, S. Zhao, H. Cao, L. Zhuo, H. Li, J. Ren, X. Liu, J. Luo, Adv. Funct. Mater., 2020, 30, 2003438.
DOI URL |
[9] |
F. Lv, N. Han, Y. Qiu, X. Liu, J. Luo, Y. Li, Coord. Chem. Rev., 2020, 422, 213435.
DOI URL |
[10] |
J. Xu, S. Lai, M. Hu, S. Ge, R. Xie, F. Li, D. Hua, H. Xu, H. Zhou, R. Wu, J. Fu, Y. Qiu, J. He, C. Li, H. Liu, Y. Liu, J. Sun, X. Liu, J. Luo, Small Methods, 2020, 4, 2000567.
DOI URL |
[11] |
S. Gao, Y. Liu, Z. Xie, Y. Qiu, L. Zhuo, Y. Qin, J. Ren, S. Zhang, G. Hu, J. Luo, X. Liu, Small Methods, 2021, 5, 2001039.
DOI URL |
[12] | T. Ma. Q. Fan, X. Li, J. S. Qiu, T. B. Mu, Z. Y. Sun, J. CO2 Utiliz., 2019, 30, 168-182. |
[13] |
Z. Liu, Acta Phys.-Chim. Sin., 2020, 36, 1912045.
DOI URL |
[14] |
Z. Y. Sun, T. Ma, H. C. Tao, Q. Fan, B. X. Han, Chem, 2017, 3, 560-587.
DOI URL |
[15] |
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T.-K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, E. H. Sargent, Nat. Chem., 2018, 10, 974-980.
DOI URL |
[16] |
A. Vasileff, C. C. Xu, Y. Jiao, Y. Zheng, S. Z. Qiao, Chem, 2018, 4, 1809-1831.
DOI URL |
[17] |
Y. A. Wu, I. McNulty, C. Liu, K. C. Lau, Q. Liu, A. P. Paulikas, C. J. Sun, Z. H. Cai, J. R. Guest, Y. Ren, V. Stamenkovic, L. A. Curtiss, Y. Z. Liu, T. Rajh, Nat. Energy, 2019, 4, 957-968.
DOI URL |
[18] |
S. L. Chu, X. P. Yan, C. Choi, S. Hong, A. W. Robertson, J. Masa, B. X. Han, Y. S. Jung, Z. Y. Sun, Green Chem., 2020, 22, 6540-6546.
DOI URL |
[19] |
W. Luc, X. B. Fu, J. J. Shi, J. J. Lv, M. Jouny, B. H. Ko, Y. B. Xu, Q. Tu, X. B. Hu, J. S. Wu, Q. Yue, Y. Y. Liu, F. Jiao, Y. J. Kang, Nat. Catal., 2019, 2, 423-430.
DOI URL |
[20] |
L. D. Hao, Q. N. Xia, Q. Zhang, J. Masa, Z. Y. Sun, Chin. J. Catal., 2021, 42, 1903-1920.
DOI URL |
[21] |
H. B. Aiyappa, J. Masa, C. Andronescu, M. Muhler, R. A. Fischer, W. Schuhmann, Small Methods, 2019, 3, 1800415.
DOI URL |
[22] |
C. S. Diercks, Y. Z. Liu, K. E. Cordova, O. M. Yaghi, Nat. Mater., 2018, 17, 301-307.
DOI URL |
[23] |
Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X.-F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun., 2018, 9, 415.
DOI PMID |
[24] |
R. Senthil Kumar, S. Senthil Kumar, M. Aabu Kulandainathan, Electrochem. Commun., 2012, 25, 70-73.
DOI URL |
[25] |
J.-X. Wu, S.-Z. Hou, X.-D. Zhang, M. Xu, H.-F. Yang, P.-S. Cao, Z.-Y. Gu, Chem. Sci., 2019, 10, 2199-2205.
DOI URL |
[26] |
J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano, A. Irabien, ChemSusChem, 2017, 10, 1100-1109.
DOI URL |
[27] |
F. Yang, A. Chen, P. Deng, Y. Zhou, Z. Shahid, H. Liu, B. Y. Xia, Chem. Sci., 2019, 10, 7975-7981.
DOI PMID |
[28] |
K. Huang, S. Guo, R. Wang, S. Lin, N. Hussain, H. Wei, B. Deng, Y. Long, M. Lei, H. Tang, H. Wu, Chin. J. Catal., 2020, 41, 1754-1760.
DOI URL |
[29] |
J.-D. Yi, D.-H. Si, R. Xie, Q. Yin, M.-D. Zhang, Q. Wu, G.-L. Chai, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed., 2021, 60, 17108-17114.
DOI URL |
[30] |
L. Majidi, A. Ahmadiparidari, N. Shan, S. N. Misal, K. Kumar, Z. Huang, S. Rastegar, Z. Hemmat, X. Zou, P. Zapol, J. Cabana, L. A. Curtiss, A. Salehi-Khojin, Adv. Mater., 2021, 33, 2004393.
DOI URL |
[31] |
Z. Meng, J. Luo, W. Li, K. A. Mirica, J. Am. Chem. Soc., 2020, 142, 21656-21669.
DOI URL |
[32] |
X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc., 2021, 143, 7242-7246.
DOI URL |
[33] |
F. Y. Zhang, J. L. Zhang, B. X. Zhang, L. R. Zheng, X. Y. Cheng, Q. Wan, B. X. Han, J. Zhang, Nat. Commun., 2020, 11, 1431.
DOI URL |
[34] |
H. M. T. Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. Dugulan, K. P. de Jong, Science, 2012, 335, 835-838
DOI URL |
[35] | Z. Tavakoli, J. CO2 UtiliZ., 2020, 41, 101288. |
[36] |
G. Kliche, Z. V. Popovic, Phys. Rev. B, 1990, 42, 10060-10066.
PMID |
[37] | Y. Q. Jiang, C. Choi, S. Hong, S. L. Chu, T. S. Wu, Y. L. Soo, L. Hao, Y. S. Jung, Z. Y. Sun, Cell Rep. Phys. Sci., 2021, 2, 100356. |
[38] |
M. W. Jia, S. Hong, T. S. Wu, X. Li, Y. L. Soo, Z. Y. Sun, Chem. Commun., 2019, 55, 12024-12027.
DOI URL |
[39] |
S. Dieckhöfer, D. Öhl, J. R. C. Junqueira, T. Quast, T. Turek, W. Schuhmann, Chem. Eur. J., 2021, 27, 5906-5912.
DOI URL |
[40] |
X. Zhang, J. C. Li, Y. Y. Li, Y. Jung, Y. Kuang, G. Z. Zhu, Y. Y. Liang, H. G. Dai, J. Am. Chem. Soc., 2021, 143, 3245-3255.
DOI PMID |
[41] |
N. Altaf, S. Y. Liang, L. Huang, Q. Wang, J. Energy Chem., 2020, 48, 169-180.
DOI URL |
[42] |
Y. Yang, Y. Zhang, J.-S. Hu, L.-J. Wan, Acta Phys.-Chim. Sin., 2020, 36, 1906085.
DOI URL |
[1] | 牛慧婷, 夏琛沣, 黄磊, Shahid Zaman, Thandavarayan Maiyalagan, 郭巍, 游波, 夏宝玉. 一维铂基纳米结构氧还原电催化剂的设计与合成[J]. 催化学报, 2022, 43(6): 1459-1472. |
[2] | 李斯杰, 谢涌, 赖碧琳, 梁瑛敏, 肖抗, 欧阳婷, 李楠, 刘兆清. 氮掺杂碳球负载原子调控的铁-钴镍黄铁矿用于高效氧催化反应[J]. 催化学报, 2022, 43(6): 1502-1510. |
[3] | Forrest Nichols, Kenneth I. Ozoemena, 陈少伟. 反应性物种的电催化生成及其对微生物灭活的影响[J]. 催化学报, 2022, 43(6): 1399-1416. |
[4] | 张利利, 蒋苏毓, 马炜, 周震. 铂基催化剂的氧还原反应路径调控[J]. 催化学报, 2022, 43(6): 1433-1443. |
[5] | 孙晓旭, 朱晓蓉, 王彧, 李亚飞. 1T′-MoTe2单层: 一种有前景的电催化合成双氧水的催化剂[J]. 催化学报, 2022, 43(6): 1520-1526. |
[6] | 吕奉磊, 花伟, 邬慧蓉, 孙浩, 邓昭, 彭扬. 金属-有机配位结构与界面调控电催化二氧化碳还原[J]. 催化学报, 2022, 43(6): 1417-1432. |
[7] | 柏景森, 杨莉婷, 金钊, 葛君杰, 邢巍. 用于氧还原反应的Pt基金属间化合物纳米晶催化剂[J]. 催化学报, 2022, 43(6): 1444-1458. |
[8] | 王慧宁, 关安翔, 张俊波, 米玉莹, 李思, 袁涛涛, 静超, 张丽娟, 张林娟, 郑耿锋. 铜掺杂的羟基氧化镍用于高效电催化乙醇氧化[J]. 催化学报, 2022, 43(6): 1478-1484. |
[9] | 何铭, 徐冰君, 陆奇. 结合原位拉曼光谱与反应性研究锡与氧化锡催化剂电催化二氧化碳还原中表面物种的作用[J]. 催化学报, 2022, 43(6): 1473-1477. |
[10] | 何杰, 王选东, 金尚彬, 刘兆清, 朱明山. 二维非金属的石墨相氮化碳/共价三嗪骨架异质结构材料用于高效和高选择性光催化二氧化碳还原[J]. 催化学报, 2022, 43(5): 1306-1315. |
[11] | 卢海娇, 李显龙, Sabiha Akter Monny, 王志亮, 王连洲. 基于过渡金属氧化物半导体上光电催化生产过氧化氢[J]. 催化学报, 2022, 43(5): 1204-1215. |
[12] | Georgia Papanikolaou, Gabriele Centi, Siglinda Perathoner, Paola Lanzafame. 变革性催化过程生产可再生燃料: 展望和挑战[J]. 催化学报, 2022, 43(5): 1194-1203. |
[13] | 王晶晶, 胡程, 张以河, 黄洪伟. CdS压电和应变敏感度调控工程用于压电催化产氢[J]. 催化学报, 2022, 43(5): 1277-1285. |
[14] | 赵振龙, 边辑, 赵丽娜, 吴红君, 徐帅, 孙磊, 李志君, 张紫晴, 井立强. 2D ZnMOF/BiVO4 S型异质结的构建及其可见光催化还原CO2性能[J]. 催化学报, 2022, 43(5): 1331-1340. |
[15] | 徐志莹, 郭春雨, 刘欣, 李苓, 王亮, 徐浩兰, 张东柯, 李春虎, 李勤, 王文泰. Ag纳米粒子修饰有机/无机Z型3DOMM-TiO2‒x异质结的构建及高效光催化和光电催化分解水制氢[J]. 催化学报, 2022, 43(5): 1360-1370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||