催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1659-1666.DOI: 10.1016/S1872-2067(21)63823-8

• 论文 • 上一篇    下一篇

V2CO2 MXene负载过渡金属单原子催化剂氧还原和氢氧化活性的DFT研究

邓忠晶, 郑星群, 邓明明, 李莉(), 李静, 魏子栋   

  1. 重庆大学化学化工学院, 重庆市理论与计算化学重点实验室, 洁净能源与资源化工过程重庆市重点实验室, 输配电装备及系统安全与新技术国家重点实验室, 重庆400044
  • 收稿日期:2021-01-29 接受日期:2021-03-26 出版日期:2021-10-18 发布日期:2021-06-20
  • 通讯作者: 李莉
  • 作者简介:*电话:(023)65678928; 电子信箱:liliracial@cqu.edu.cn
    第一联系人:

    共同第一作者.

  • 基金资助:
    国家自然科学基金重点项目(21822803);国家自然科学基金重点项目(91834301);国家自然科学基金重点项目(21576032)

Catalytic activity of V2CO2 MXene supported transition metal single atoms for oxygen reduction and hydrogen oxidation reactions: A density functional theory calculation study

Zhongjing Deng, Xingqun Zheng, Mingming Deng, Li Li(), Li Jing, Zidong Wei   

  1. The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2021-01-29 Accepted:2021-03-26 Online:2021-10-18 Published:2021-06-20
  • Contact: Li Li
  • About author:Li obtained her MSc and PhD degree in 2004 and 2010 from Chongqing University. In 2010, she joined the faculty of College of Chemistry and Chemical Engineering, Chongqing University. Her main interests are in the fundamental studies of electrochemical and electrocatalytic processes through the theoretical investigations. Her research focuses on development novel electrocatalysts with high activity and stability, exploring the relationship between the catalytic activity and the electronic structure of the catalysts, and understanding the underlying mechanisms. She has coauthored about more than 100 peer-reviewed papers. Her main academic achievements include: 1. Proposing the “triple effect: charge, spin density and ligand effect” to explain the enhancement mechanism of doped graphene for ORR. 2. Exploring the theoretical foundation for tuning the catalytic activity and stability of carbon supported Pt-based catalysts. 3. Manifesting a general oxygen-vacancies based regulation mechanism for enhancing ORR activity of metal oxides. 4. Proposing a “chimney effect” for enhancing HER activity on the interface between the metal oxide/metal catalysts. She joined the editorial board of Chin. J. Catal. in 2020.First author contact:

    Contributed to this work equally.

  • Supported by:
    National Natural Science Foundation of China(21822803);National Natural Science Foundation of China(91834301);National Natural Science Foundation of China(21576032)

摘要:

开发廉价且高性能的电催化剂对推动燃料电池的商业应用具有重要意义. 二维(2D) MXenes和单原子(SAs)催化剂是催化研究中的两个前沿领域. 2D MXenes材料具有独特的几何和电子结构, 能够有效调节负载SAs的催化性能. 而负载的SAs又会反过来影响2D MXenes材料的本征活性, 使2D MXenes形成更加丰富的活性位, 进而提升其催化性能.
为了拓展2D负载SAs催化剂在燃料电池中的应用, 本文采用密度泛函理论(DFT)计算, 系统地研究了V2CO2 MXenes负载过渡金属(TM, 包括一系列3d、部分4d和5d金属) SAs催化剂的稳定结构、电子结构及其催化氧还原(ORR)和氢氧化(HOR)的催化活性, 并筛选出潜在的可替代贵金属铂的ORR/HOR的双功能催化剂. 稳定结构计算结果表明, 3d TM SAs倾向于以锚定的形式负载于V2CO2表面与O原子作用, 而4d, 5d TM原子倾向于以掺杂的形式负载于含氧空穴的V2CO2表面与V原子作用; 同时, Sc, Ti, V, Rh, Pd, Pt, Ag和Au SAs在V2CO2表面因具有较高扩散能垒, 不易团聚, 具有较高的热力学稳定性. 电子结构计算结果表明, 锚定型的TM SAs与O形成共价键, 伴随发生明显的电荷转移, 带较多正电荷; 掺杂型的TM SAs与V形成金属键, 因TM-V和V-O键间电荷转移的协同影响, 导致TM SAs仅带有少量的电荷. TM-V2CO2电子结构与ORR/HOR中间物种的吸附关系为, TM位点为ORR中间物种(O, OH和OOH)的吸附位点, 且d电子数为1、5、10的TM比其他TM对ORR物种的吸附更弱; 而TM-V2CO2表面的O原子为HOR中间物种(H)的有效吸附位点, 且H的吸附强弱与O位点的电荷有关, 即O位点负电荷越多, 对H的吸附越弱. TM-V2CO2催化剂各活性位对ORR和HOR反应物种的选择性吸附结果表明, 催化剂有利于形成丰富多样的活性位, 并具备作为双功能催化剂的内在优势. TM-V2CO2催化剂ORR和HOR理论活性筛选发现: 与Pt(111)相比, Sc-、Mn-、Rh-和Pt-V2CO2具有较高的ORR活性, 而Sc-、Ti-、V-、Cr-和Mn-V2CO2表现出较高的HOR活性. 其中, Sc-V2CO2和Mn-V2CO2因同时具有较高的ORR和HOR活性和稳定性, 有望成为高效和低成本的燃料电池双功能催化剂. 本文从研究TM-V2CO2性质和活性出发, 深入研究了SAs与2D MXenes间相互作用及其对ORR与HOR催化活性的影响机制, 筛选出了高效、低成本的ORR/HOR双功能催化剂, 为合理设计燃料电池双功能催化剂提供了理论指导.

关键词: 单原子催化剂, MXenes材料, 氧还原, 氢氧化, 密度泛函理论, 燃料电池

Abstract:

Two-dimensional (2D) MXene and single-atom (SA) catalysts are two frontier research fields in catalysis. 2D materials with unique geometric and electronic structures can modulate the catalytic performance of supported SAs, which, in turn, affect the intrinsic activity of 2D materials. Density functional theory calculations were used to systematically explore the potential of O-terminated V2C MXene (V2CO2)-supported transition metal (TM) SAs, including a series of 3d, 4d, and 5d metals, as oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) catalysts. The combination of TM SAs and V2CO2 changes their electronic structure and enriches the active sites, and consequently regulates the intermediate adsorption energy and catalytic activity for ORR and HOR. Among the investigated TM-V2CO2 models, Sc-, Mn-, Rh-, and Pt-V2CO2 showed high ORR activity, while Sc-, Ti-, V-, Cr-, and Mn-V2CO2 exhibited high HOR activity. Specifically, Mn- and Sc-V2CO2 are expected to serve as highly efficient and cost-effective bifunctional catalysts for fuel cells because of their high catalytic activity and stability. This work provides theoretical guidance for the rational design of efficient ORR and HOR bifunctional catalysts.

Key words: Single atoms catalyst, MXenes, Oxygen reduction reaction, Hydrogen oxidation reaction, Density functional theory, Fuel cells