催化学报 ›› 2024, Vol. 57: 80-95.DOI: 10.1016/S1872-2067(23)64614-5

• 论文 • 上一篇    下一篇

高活性方形氧化铅与可视化电解槽协同促进电催化臭氧生产

刘佳a,1, 王式彬a,1, 蔡锦福a,1, 武立振b, 刘云b, 贺佳辉a, 许在祥a, 彭小革a, 钟兴a,*(), 安亮b,*(), 王建国a,*()   

  1. a浙江工业大学化工学院, 工业催化研究所, 绿色化学合成技术国家重点实验室培育基地, 浙江杭州 310032
    b香港理工大学机械工程系, 香港九龙
  • 收稿日期:2023-09-21 接受日期:2023-12-11 出版日期:2024-02-18 发布日期:2024-02-10
  • 通讯作者: * 电子信箱: zhongx@zjut.edu.cn (钟兴),liang.an@polyu.edu.hk (安亮),jgw@zjut.edu.cn (王建国).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2022YFA1504200);国家重点研发计划(2021YFA1500903);浙江省自然科学基金(LR22B060003);国家自然科学基金(22322810);国家自然科学基金(22078293);国家自然科学基金(22141001);国家自然科学基金(22008211)

Synergistic promotion by highly active square-shaped lead oxide and visualized electrolyzer for enhanced electrochemical ozone production

Jia Liua,1, Shibin Wanga,1, Jinfu Caia,1, Lizhen Wub, Yun Liub, Jiahui Hea, Zaixiang Xua, Xiaoge Penga, Xing Zhonga,*(), Liang Anb,*(), Jianguo Wanga,*()   

  1. aInstitute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
    bDepartment of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
  • Received:2023-09-21 Accepted:2023-12-11 Online:2024-02-18 Published:2024-02-10
  • Contact: * E-mail: zhongx@zjut.edu.cn (X. Zhong), liang.an@polyu.edu.hk (L. An), jgw@zjut.edu.cn (J. Wang).
  • About author:1 Contributed equally to this work.
  • Supported by:
    National Key R&D Program of China(2022YFA1504200);National Key R&D Program of China(2021YFA1500903);Zhejiang Provincial Natural Science Foundation(LR22B060003);National Natural Science Foundation of China(22322810);National Natural Science Foundation of China(22078293);National Natural Science Foundation of China(22141001);National Natural Science Foundation of China(22008211)

摘要:

臭氧是一种环境友好型氧化剂, 可直接用于消毒、杀菌和废水处理, 对于维护和促进公共卫生安全至关重要. 由于臭氧容易分解, 不利于储存, 因此需要现制即用. 目前臭氧生成技术主要包括: 电晕放电法和电催化臭氧生产(EOP)技术. 相较于电晕放电法, EOP是一种本质安全的臭氧生产技术. 然而, 该工艺相较于电晕放电技术电能消耗量大, 为了使其更具商业可行性, 有必要开发高活性且低成本的电催化剂. 此外, 合理的电解槽设计对于实现高效EOP过程也至关重要. 然而, 目前研究主要集中在提高EOP催化剂活性方面, 对电解槽的结构设计优化的关注较少. 本文通过开发高效电催化剂进而将其应用于结构优化后的电解槽中, 实现了更加高效的EOP过程.

本文采用水热方法成功制备了一种具有较高EOP活性的方形氧化铅(PbOx-CTAB-120)电催化剂. 在标准三电极测试系统中, 电流密度为50 mA cm-2的测试条件下, 法拉第效率(FE)可达20.7%, 与商用β-PbO2(17.1%)相比提高了21.1%. 此外, 设计了具有平行流场的可视化EOP电解槽, 该可视化电解槽在传质和传热方面具有明显优势, 有利于实现更加高效的EOP过程. 将催化剂PbOx-CTAB-120组装至可视化电解槽中, 在1.0 A cm-2的测试电流密度下, 电解液为超纯水, 该体系气态臭氧产量可以达到588 mg h-1 g-1catalyst, 比能量消耗(PEOP)为56 Wh g-1gaseous ozone. 体系臭氧产量约为商用β-PbO2在传统电解槽中产量的2倍, 并且PEOP降低率超过62%. 原位18O同位素标记差分电化学质谱和密度泛函理论计算结果表明, PbOx-CTAB-120电催化剂在EOP过程中遵循晶格氧机理路径, 晶格氧迁移产生的氧空位能有效稳定OOH*和O2*反应中间体, 因此有利于催化剂在EOP过程中保持较好的反应活性和稳定性. 同时, 还利用先进的高速摄像可视化工具和计算流体力学(CFD)仿真模拟研究了平行流场EOP电解槽的运行过程和高效传质传热的原理. CFD模拟结果表明, 与传统流场模型相比, 平行流场对应的出口气泡停留时间更长, 说明平行流场更有利于产物气泡从出口逸出, 即气泡容易快速扩散, 与实验结果一致. 因此, PbOx-CTAB-120电催化剂与新型可视化电解槽相结合, 有助于在超纯水中实现较好的气态臭氧产率和较低比能耗. 此外, 二者的结合充分发挥了电催化剂的EOP活性和电解槽的传质特性所带来的优势, 实现了反应性和传输性的协同增强, 从而极大促进了原位有机污染物降解效率.

综上所述, 本文在制备高效阳极催化剂的基础上, 同时利用优化电解槽结构实现了提升臭氧产率和降低过程能耗, 为高活性电催化剂与优化的电解槽耦合以实现高效EOP过程及其有效应用提供参考.

关键词: PbOx-CTAB-120, 可视化电解槽, 电催化臭氧生产, 计算流体力学模拟, 原位降解

Abstract:

Electrochemical ozone production (EOP) is an intrinsically safe technology compared to Corona discharge methods for ozone generation. However, EOP technology exhibits higher electrical utility demand. Herein, a square-shaped lead oxide (PbOx-CTAB-120) electrocatalyst with outstanding EOP activity has been successfully prepared by a simple method. Then the PbOx-CTAB-120 was assembled into a newly visualized EOP electrolyzer (with parallel flow field) at 1.0 A cm-2 in ultrapure water. The gaseous ozone yield reached 588 mg h-1 g-1catalyst, corresponding to a specific energy consumption (PEOP) of 56 Wh g-1gaseous ozone. In-situ 18O isotope-labelled differential electrochemical mass spectrometry reveals that PbOx-CTAB-120 undergoes phase shuttling to β-PbO2 via the lattice oxygen oxidation mechanism pathway. Furthermore, density functional theory calculations for multiple reaction pathways on the Pb3O4 (110) surface also demonstrated the participance of lattice oxygen in the EOP process, with the results show that the oxygen vacancy generated from lattice oxygen migration could effectively stabilize the OOH* and O2* reaction intermediate in contrast to the adsorbate evolution mechanism. Therefore, the presence of highly stabilized surfaces Pb3O4 (110) on PbOx-CTAB-120 before phase shuttling and the stabilization of β-PbO2 (101) and β-PbO2 (110) crystalline surfaces after phase shuttling allowed PbOx-CTAB-120 to maintain its excellent EOP activity and stability. Moreover, based on computational fluid dynamics simulations and experimental observations, the parallel flow field design facilitated efficient mass transfer of the gaseous product (O2+O3) and effective thermal dissipation of the system. In addition, the high activity electrocatalyst coupled with the optimized EOP electrolyzer enabled efficient in-situ degradation of organic species.

Key words: PbOx-CTAB-120, Visualized electrolyzer, Electrochemical ozone production, Computational fluid dynamics, simulation, In-situ degradation