催化学报 ›› 2024, Vol. 57: 68-79.DOI: 10.1016/S1872-2067(23)64585-1

• 论文 • 上一篇    下一篇

理论和实验相结合研究NiCo2O4纳米片用于甘油电氧化反应机制

段妍a,c,1, 薛米风b,1, 刘彬a, 张曼a, 王宇辰a, 王宝俊b, 章日光b,*(), 严凯a,*()   

  1. a中山大学环境科学与工程学院, 广东省环境污染控制与修复技术重点实验室, 广东广州 510275
    b太原理工大学化学工程与技术学院, 煤炭清洁高效利用国家重点实验室, 山西太原 030024
    c广东工业大学环境科学与工程学院, 广东广州 510006
  • 收稿日期:2023-11-01 接受日期:2023-12-20 出版日期:2024-02-18 发布日期:2024-02-10
  • 通讯作者: * 电子信箱: zhangriguang@tyut.edu.cn (章日光),yank9@mail.sysu.edu.cn (严凯).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2023YFC3905804);广州市科技计划项目(202206010145);国家自然科学基金项目(22078374);国家自然科学基金项目(22378434);广东省科技计划项目(2021B1212040008);广东省岭南现代农业重点实验室项目(NT2021010)

Integration of theory prediction and experimental electrooxidation of glycerol on NiCo2O4 nanosheets

Yan Duana,c,1, Mifeng Xueb,1, Bin Liua, Man Zhanga, Yuchen Wanga, Baojun Wangb, Riguang Zhangb,*(), Kai Yana,*()   

  1. aGuangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
    bState Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    cSchool of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2023-11-01 Accepted:2023-12-20 Online:2024-02-18 Published:2024-02-10
  • Contact: * E-mail: zhangriguang@tyut.edu.cn (R. Zhang), yank9@mail.sysu.edu.cn (K. Yan).
  • About author:1 Contributed to this work equally.
  • Supported by:
    National Key R&D Program of China(2023YFC3905804);Scientific and Technological Planning Project of Guangzhou(202206010145);National Natural Science Foundation of China(22078374);National Natural Science Foundation of China(22378434);Science and Technology Planning Project of Guangdong Province, China(2021B1212040008);Guangdong Laboratory for Lingnan Modern Agriculture Project(NT2021010)

摘要:

甘油是生物质精炼的主要副产物(约占10%), 年过剩量与低利用率导致其市场价格(0.24-0.6 US kg-1)较低. 甘油是具有三个活性羟基的多元醇, 被认为是生产高价值产品的理想原料. 甲酸作为甘油转化最重要的产品之一, 广泛应用于农药、皮革、染料和医药行业, 将甘油电氧化(EGOR)为甲酸(FA)不仅能有效避免资源过剩造成浪费, 而且能满足未来对甲酸燃料电池的需求. 然而甘油电催化氧化途径较为复杂, 涉及反应中间产物的脱氢、吸附/解吸和C-C键裂解.

本文将密度泛函理论(DFT)与实验相结合, 研究了在精细构建的NiCo2O4纳米片上通过EGOR生产FA的反应机制. DFT计算结果表明, 活性羟基(OH*)物种可以改变EGOR生产FA过程的决速步骤(RDS), 通过调节吸附中间体的吸附能可获得理想的FA产率. 其中, 高度羟基化的NiCo2O4纳米片(311)-OH*晶面上具有最低的吉布斯自由能, 能显著提升反应过程动力学. 在理论分析的基础上, 通过简易的电沉积方法精准制备了超薄NiCo2O4纳米片 (~1.7 nm), 并采用X射线吸收精细结构谱和高分辨透射电镜对催化剂进行了结构分析. 结果表明, NiCo2O4纳米片中四面体(ATd)和八面体(BOh)配位具有内角共享的ATd-O-BOh和边共享的BOh-O-BOh构型, 金属间的协同作用有效改善了材料的电子效应, 有利于提供更多的吸附位点并促进EGOR过程中的电荷转移. NiCo2O4纳米片在EGOR中的电荷转移电阻仅为0.94 Ω, 电化学活性表面积高达10.25 cm2. 相比较电催化析氧反应, NiCo2O4纳米片表现出了较好的EGOR性能, 在10 mA cm-2的电流密度下阳极功耗降低了320 mV, 在100 mA cm-2的电流密度时的阳极电势仅为1.46 VRHE. 此外, 在120 h的稳定性测试中, 甘油的转化率和FA的选择性可分别保持在89%和70%. 多电位步骤实验、原位电化学阻抗谱和电子顺磁共振谱结果表明, NiCo2O4纳米片上原位产生的OH*物种是EGOR过程中的直接活性中心, 有利于将RDS从甘油酸脱氢裂解转化为甘油醛的脱氢步骤, 并进一步促进C-C键的裂解. 进一步结合理论预测, 证实了OH*物种是EGOR过程中的直接活性中心.

综上, 采用绿色高效的电催化手段促进甘油生产高附加值化学品是生物质链升级的重要举措, 有效避免了传统的高温高压, 以水为介质, 原位利用OH*. 本文为新型催化剂的未来设计和理解生物质基原料电氧化升级反应机制提供了新思路.

关键词: 密度泛函理论预测, 活性羟基, 电化学氧化, 甘油, NiCo2O4纳米片

Abstract:

Electrocatalytic refinery of low-value biomass-based glycerol into value-added chemicals formic acid (FA) is an attractive alternative to traditional thermochemical refineries. However, constructing non-precious catalysts with abundant active hydroxyl (OH*) is the main obstacle to the electrocatalytic glycerol oxidation reaction (EGOR). Herein, we combine density functional theory (DFT) and experiments to investigate EGOR over the finely constructed NiCo2O4 nanosheets. DFT results firstly indicate that the NiCo2O4 nanosheets exhibit the highly hydroxylated (311)-OH* surface with the lowest Gibbs free energy, which significantly improves the electrochemical reaction kinetics and can achieve desirable FA yield by adjusting the adsorption energy of the adsorption intermediate. Following the theoretical prediction, ultrathin NiCo2O4 nanosheets (~1.70 nm) are fabricated by a facile electrodeposition method with sufficient OH* on the surface. The charge-transfer resistance of NiCo2O4 nanosheets in EGOR is only 0.94 Ω and the anode power consumption can be reduced by up to 320 mV at 10 mA cm-2, keeping the high glycerol conversion (89%) and FA selectivity (70%) during the 120-h stability test. DFT calculations and experimental tools (e.g., multi-potential step experiments, operational electrochemical impedance spectroscopy) confirm that OH* in-situ generated on the thin nanosheets structure is essential in facilitating charge transfer between catalysts and adsorbed molecules to enhance C-C bond cleavage. This work offers a guideline for the rational design of robust catalysts for the selective upgrading of biomass-derived chemicals.

Key words: Density functional theory prediction, active hydroxyl, Electrochemical oxidation, Glycerol, NiCo2O4 nanosheets