催化学报 ›› 2024, Vol. 58: 86-104.DOI: 10.1016/S1872-2067(23)64600-5

• 综述 • 上一篇    下一篇

催化剂晶面工程在光/电催化中的研究进展

李奇, 李杰浩, 白惠敏, 李发堂*()   

  1. 河北科技大学理学院, 河北表面界面光电调控重点实验室, 河北石家庄050018
  • 收稿日期:2023-12-06 接受日期:2024-01-10 出版日期:2024-03-18 发布日期:2024-03-28
  • 通讯作者: *电子信箱: lifatang@126.com (李发堂).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22178084);国家自然科学基金(21776059);国家重点研发计划(2022YFE0101800);河北省自然科学基金创新研究群体基金(B2021208005)

Progress on facet engineering of catalysts for application in photo/electro-catalysis

Qi Li, Jiehao Li, Huimin Bai, Fatang Li*()   

  1. Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2023-12-06 Accepted:2024-01-10 Online:2024-03-18 Published:2024-03-28
  • Contact: *E-mail: lifatang@126.com (F. Li).
  • About author:Fatang Li is a professor at College of Science, Hebei University of Science and Technology, China. He received his B.S. and M.S. degrees from Wuhan University of Technology, China, in 1996 and 1999, respectively. Then he worked in Hebei University of Science and Technology, Shijiazhuang, China. In 2007, he received his Ph.D. degree in industrial catalysis from Tianjin University, China. He was a visiting scholar in School of Chemical Engineering at the University of Adelaide under the supervision of Prof. Shizhang Qiao from 2014 to 2015. He was selected in “National Hundred, Thousand and Ten Thousand Talents Project” and “National Young and Middle-Aged Experts with Outstanding Contributions” in 2020, “Distinguished Young Scholars of Hebei Province” in 2015, and “New Century Excellent Talents Project” in 2012. His current scientific interests focus on photo/electro-catalytic nanomaterials for environmental protection and energy conversion. He has coauthored more than 100 papers in peer-reviewed journals, including Angew. Chem. Int. Ed., Adv. Mater.
    1 Contributed equally to this work.
  • Supported by:
    Natural National Science Foundation of China(22178084);Natural National Science Foundation of China(21776059);National Key R&D Program of China(2022YFE0101800);Foundation for Innovative Research Groups of the Natural Science Foundation of Hebei Province(B2021208005)

摘要:

通过光/电催化技术将太阳能或电能转换为化学能对于缓解能源危机展现出巨大的潜力, 因此, 将晶面工程用于光/电催化材料的研究备受关注. 不同表面原子组成和不同表面能晶面会直接影响反应的性能、稳定性、中间产物以及增值化学品的生成, 因此深入研究晶面工程影响光/电催化的过程成为既具挑战性又富有吸引力的课题. 近年来, 从基础科学研究到实际应用, 晶面工程在光/电催化反应均取得显著进展, 为了进一步提高光/电催化效率, 为催化剂晶面工程设计提供指导, 对最近的研究成果进行全面而系统的总结尤为重要.

本文从晶面工程的微观机制、晶面的可控制备方法、晶面工程在光/电催化领域中的应用以及晶面工程的设计原理及突破方向等四个方面综述了晶面的研究进展. 概括了晶面工程的微观机制以及如何影响光/电催化反应, 讨论了利用先进的光谱表征直接跟踪催化剂化学态的动态演变以判断晶面催化剂的活性位点, 并总结了如何通过吸附、晶面能级、空间电荷、过渡态等理论分析间接判断晶面微观作用机制. 强调了晶面可控制备方法, 如通过封端剂的使用、pH值调控和前驱体水解等方法调控成核和生长速率进而控制不同晶面的各向异性生长, 介绍了晶面工程在光/电催化二氧化碳还原、产氢和固氮等方面的应用, 并着重探讨了晶面如何影响光/电催化反应的性能和选择性, 总结了晶面工程的设计策略和突破方向, 探讨了传统修饰策略包括电催化剂充当光催化剂特定晶面的助催化剂、构建晶面结、在晶面中引入缺陷、掺杂等, 以及新兴修饰手段如单/双原子催化剂的铆定、晶面与表面等离子体基元共振效应耦合、晶面的自旋态调控、压电势调节等对晶面催化剂的积极影响.

最后, 本文提出了晶面工程面临的一些挑战: (1) 传统意义上的高活性晶面与性能之间的关系仍不明确; (2) 材料稳定性问题的解决将对晶面工程的实际应用具有重要意义; (3) 继续开发新的可控制备方法十分必要. 综上, 本文从晶面研究角度对于高性能光/电材料的设计合成提供一定的参考和借鉴.

关键词: 晶面工程, 光/电催化, 微观机理, 可控制备, 设计原理

Abstract:

The conversion and storage of solar or electrical energy into chemical energy through photo/electro-catalysis technology shows fascinating potential for alleviating the energy crisis. The application of facet engineering in photo/electrocatalytic materials has shown significant advantages, making it an attractive and challenging topic at the intersection of physics and chemistry. In recent years, from basic scientific research to practical applications, facet engineering has made significant progress in photo/electro-catalytic reactions. In this review, we mainly focus on the microscopic mechanisms of facet engineering and how it specifically affects photo/electro-catalytic reactions, including CO2 reduction, hydrogen evolution, and nitrogen reduction. The microscopic mechanisms are elucidated and direct evidence for improving catalytic reactions is revealed through advanced spectroscopic characterization and theoretical analysis. Based on the microscopic mechanisms of facet engineering, the design principles and breakthrough directions for facet engineering are proposed, such as LSPR and single atom modification etc. In particular, we emphasize the controllable preparation methods for facet exposure from the aspects of capping agents, pH regulation and precursor hydrolysis, etc. Finally, the outlooks and future development prospects of facet engineering are briefly discussed.

Key words: Facet engineering, Photo/electro-catalysis, Microscopic mechanism, Controllable preparation, Design principle