催化学报 ›› 2022, Vol. 43 ›› Issue (3): 679-707.DOI: 10.1016/S1872-2067(21)63863-9

• 综述 • 上一篇    下一篇

中空纳米材料的构建原理及其在光催化制氢和二氧化碳还原反应中的应用

李旭力a,b, 李宁a,b, 高旸钦a,b, 戈磊a,b,*()   

  1. a中国石油大学(北京)重质油国家重点实验室, 新能源与材料学院, 北京 102249
    b中国石油大学(北京)新能源与材料学院, 材料科学与工程系, 北京 102249
  • 收稿日期:2021-04-20 修回日期:2021-04-20 出版日期:2022-03-18 发布日期:2022-02-18
  • 通讯作者: 戈磊
  • 基金资助:
    国家重点研发项目(2019YFC1907602);国家自然科学基金(51572295);国家自然科学基金(21273285);国家自然科学基金(21003157)

Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction

Xuli Lia,b, Ning Lia,b, Yangqin Gaoa,b, Lei Gea,b,*()   

  1. aState Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
    bDepartment of Materials Science and Engineering, College of New Energy and Materials, China University of Petroleum Beijing, Beijing 102249, China
  • Received:2021-04-20 Revised:2021-04-20 Online:2022-03-18 Published:2022-02-18
  • Contact: Lei Ge
  • Supported by:
    National Key R&D Program of China(2019YFC1907602);National Natural Science Foundation of China(51572295);National Natural Science Foundation of China(21273285);National Natural Science Foundation of China(21003157)

摘要:

随着全球经济的快速发展, 能源短缺与环境污染成为当今世界共同关注的热点问题, 开发和利用洁净能源成为当务之急. 近年, 以半导体为基础的光催化技术引起了国内外的广泛关注, 其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等. 尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化学能源. 因此, 设计高效稳定的光催化材料具有重要意义. 中空结构材料由于具有比表面积大、光吸收效率高以及载流子传输路径缩短等优点, 在能量转换领域备受关注, 且中空材料的内外表面结构为其它组分的沉积提供了良好的平台. 近年来, 研究人员设计和合成了大量的多级纳米中空复合材料.
本文首先综述了中空材料的一般制备方法: 硬模板法、软模板法以及自模板法, 并从合成方法的基本概念、合成步骤以及优缺点进行了概述. 总结了近年用于光催化领域中典型单一中空结构材料的合成方法和机理, 包括中空结构的CdS, ZnxCd1‒xS, g-C3N4, TiO2, CeO2等体系. 但单一催化材料的光生电子-空穴对的复合效率较高, 导致其催化性能较低, 因此, 合理设计和构建多级结构对于提升光催化性能具有重要的意义. 其次, 对多级结构的中空材料进行了分类, 概述了构建策略、光催化制氢以及光催化还原二氧化碳的机制. 具有多级结构的中空光催化剂可分为两大类, 包括中空助催化剂为基体的材料和中空主光催化剂为基体的材料, 其它复杂中空光催体系也基于上述体系的延伸. 最后, 对中空结构的特征和影响规律的应用实例进行了介绍. 同时, 对文献报道的探索中空纳米材料光催化机理的有效方法, 如表面光电压测试、电子自旋顺磁共振技术、理论计算结合实验等技术手段进行了总结.
尽管中空材料在能量转换领域取得了一系列进展, 但该领域仍然存在诸多挑战, 与实际应用的要求仍然差距较大. 中空光催化材料的设计、制备和性能调控需要综合考虑经济、高性能、稳定性和环境友好等因素, 为大规模应用提供基础. 另一方面, 探索光催化机理非常重要, 深入进行机理研究不仅有利于设计高效光催化剂, 推动表征技术和微观结构分析的进步, 还有助于光催化领域的持续发展. 综上, 本文为新型中空材料的制备和光催化制氢和CO2还原机理的深入探索提供一定的参考和依据.

关键词: 中空结构, 光催化, 制氢, CO2还原, 设计原理

Abstract:

Photocatalysis is considered a prospective way to alleviate the energy crisis and environmental pollution. It is therefore extremely important to design highly efficient photocatalysts for catalytic systems. In recent years, hollow-structured materials have attracted considerable interest for application in energy conversion fields owing to their large specific surface areas, improved light absorption, and shortened charge carrier transfer path. Because they contain inner and outer surfaces, hollow-structured materials can provide a superior platform for the deposition of other components. A number of hollow-structured hierarchical systems have been designed and fabricated in recent decades. It is important to rationally design and construct complex hierarchical structures. In this review, general preparation approaches for hollow-structured materials are presented, followed by a summary of the recent synthesis methods and mechanisms of typical hollow-structured materials for applications in the photocatalytic field. Complex hollow-structured hierarchical photocatalysts are classified into two types, hollow cocatalyst-based and hollow host photocatalyst-based, and the design principle and analysis of the photocatalytic reaction mechanism for photocatalytic H2 evolution and CO2 reduction are also introduced. The effects of hollow-structured materials have also been investigated. This review provides a reference for the rational construction of advanced, highly efficient photocatalytic materials.

Key words: Hollow structure, Photocatalysis, H2 evolution, CO2 reduction, Design principle