催化学报 ›› 2024, Vol. 59: 15-37.DOI: 10.1016/S1872-2067(23)64611-X
程成a,b, 任伟b, 张晖a,*(), 段晓光b,*(
), 王少彬b,*(
)
收稿日期:
2023-12-30
接受日期:
2024-01-23
出版日期:
2024-04-18
发布日期:
2024-04-15
通讯作者:
*电子信箱: 基金资助:
Cheng Chenga,b, Wei Renb, Hui Zhanga,*(), Xiaoguang Duanb,*(
), Shaobin Wangb,*(
)
Received:
2023-12-30
Accepted:
2024-01-23
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: About author:
Hui Zhang (School of Resource and Environmental Sciences, Wuhan University) received his Ph.D. degree from South China University of Technology (China) in 1995. Since then, he has been working at Wuhan University and is currently a professor. His research interests focus on environmental chemistry, environmental catalysis and advanced oxidation technologies for environmental remediation. He has published more than 180 refereed journal papers with citation over 18000 and H-index of 77. He was recognized as highly cited researcher (Cross-Field) in 2022 and 2023 by Clarivate and was in the list of highly cited Chinese authors (Environmental Science and Engineering) by Elsevier in 2020, 2021 and 2022. He served as a member of the editorial board of Journal of Hazardous Materials.Supported by:
摘要:
随着全球工业化的迅速发展, 大量有毒污染物不断排入水体中, 对水生态系统和人类健康构成了严重威胁. 为应对这一挑战, 人们发展高级氧化技术, 其通过产生活性自由基, 能够氧化并矿化有毒污染物. 其中, 利用非均相催化剂活化的过一硫酸盐高级氧化过程可产生多种非自由基活性物种, 如单线态氧、催化剂-过硫酸盐复合体和高价态金属, 这些物种具有选择性氧化特定污染物的能力. 为了实现对污染物的精准处理, 需要合理设计与调控非均相催化剂的结构, 以选择性地产生自由基/非自由基物种. 单原子催化剂具有较高的原子利用效率和明确可调控的活性位点结构, 可高效且选择性活化过一硫酸盐, 并产生多种活性组分. 然而, 由于活性组分多元的生成路径及其之间复杂的相互作用, 目前对于单原子催化剂在过一硫酸盐活化过程中的结构-活性/选择性关系尚未得到深入揭示. 因此, 本研究旨在通过深入探究单原子催化剂的结构与性能关系, 为优化催化剂设计、提升污染物处理效率提供科学依据.
本文围绕最具代表性的单原子铁系催化剂, 系统分析并总结了在过一硫酸盐高级氧化过程中的结构-活性/选择性关系. 首先, 简要介绍了单原子铁催化剂的制备方法和表征手段, 以及活性位点结构的生成过程. 然后, 深入分析了单原子铁催化剂活化过一硫酸盐过程的研究进展和反应特性. 从理论与实验角度, 详细阐述了过一硫酸盐活化过程中活性物种产生的反应原理. 具体来说, 探讨了自由基、单线态氧、催化剂-过硫酸盐复合体和高价铁组分在不同单原子铁位点上的生成机理及鉴别方法. 进一步地, 分析了单原子铁催化剂活性位点的几何结构和电子结构性质对活性物种产生的影响, 总结了调控活性位点的有效手段. 在此基础上, 建立单原子铁催化剂结构与产生活性组分之间的结构-活性/选择性关系, 以期为非均相过一硫酸盐活化剂的设计提供理论指导. 最后, 本文还指出了基于单原子催化剂的过一硫酸盐高级氧化过程所面临的挑战, 并展望了未来的发展方向.
未来, 应进一步发展原位/工况条件下的表征技术, 以精准捕捉活化过程中活性位点的结构演变和关键反应中间体的生成, 从而更深入地揭示反应机理; 此外, 设计具有双金属位点的催化剂, 可优化多步骤反应中不同反应中间体的吸附与电荷转移过程, 实现协同催化效果. 本文期望为深入理解过一硫酸盐高级氧化技术的反应机理和开发高效选择性的单原子环境催化剂提供有益借鉴.
程成, 任伟, 张晖, 段晓光, 王少彬. 基于单原子铁催化剂的过一硫酸盐高级氧化过程: 配位结构和活性组分[J]. 催化学报, 2024, 59: 15-37.
Cheng Cheng, Wei Ren, Hui Zhang, Xiaoguang Duan, Shaobin Wang. Single-atom iron catalysts for peroxymonosulfate-based advanced oxidation processes: Coordination structure versus reactive species[J]. Chinese Journal of Catalysis, 2024, 59: 15-37.
Fig. 2. (a) A cascade anchoring strategy using oxygen functional groups as anchor sites. Reprinted with permission from Ref. [71]. Copyright 2019 Springer Nature. (b) A spatial confinement strategy using a ZIF-8 cage as a host. Reprinted with permission from Ref. [78]. Copyright 2017, John Wiley and Sons. (c) A defect design strategy using Di-vacancy on graphene as anchor sites. Reprinted with permission from Ref. [84]. Copyright 2018, Elsevier Inc. (d) A thermal atomization strategy to in situ transform metal NPs to single atoms. Reprinted with permission from Ref. [86]. Copyright 2018, John Wiley and Sons. (e) Structure evolution of a Fe-N4 site in a typical “bottom-up” synthesis route. Reprinted with permission from Ref. [87]. Copyright 2019, John Wiley and Sons.
Support | Synthetic method | Structure (lM-N) | Loading (wt%) | PMS conc. Cat. dosage | Pollutant (Conc.) | kobs (min-1) | Reactive species | Ref. |
---|---|---|---|---|---|---|---|---|
N-C | pyrolysis of Fe(OAc)2-phen complex anchored O-g-C3N4 in N2 at 600 °C | Fe-N4 (2.00 Å) Fe-Fe N-pyridinic | — | 0.4 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.24 | Surface-bond SO4•-/•OH, 1O2 | [ |
N-C | pyrolysis of mixture of Fe(acac)3 anchored carbon and DCD in N2 at 900 °C | Fe-N4 (2.04 Å) Fe-Fe, N-pyridinic, FeII | 9.0 | 0.4 mmol L-1 0.1 g L-1 | BPA (11.4 mg L-1) | 0.44 | SO4•-, •OH, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored pyrrole-phytic acid hydrogel in N2 at 700 °C and acid leaching | Fe-N3-P1, N-pyridinic, FeII | 2.32 | 0.65 mmol L-1 0.1 g L-1 | BPA (20 mg L-1) | 0.8 | SO4•-, •OH, O2•-, 1O2 | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored carbon black in N2 at 600 °C | Fe-N4 (2.04 Å), N-pyrrolic, FeII | 1.42 | 1.5 mmol L-1 0.1 g L-1 | ACP (7.6 mg L-1) | — | SO4•-, •OH | [ |
N-CNT | pyrolysis of mixture of Fe2(SO4)3, melamine, and O-CNT in N2 at 800 °C and acid leaching | Fe-N3 (1.97 Å), Fe-Fe N-pyridinic, FeII | 1.45 | 0.65 mmol L-1 0.2 g L-1 | PE (9.4 mg L-1) | 2.59 | SO4•-, •OH | [ |
N-C | pyrolysis of PPh3 encapsulated Fe-doped ZIF-8 in Ar at 900 °C and acid leaching | Fe-N3-P1, Fe-N: 1.90 Å, Fe-P: 2.26 Å, N-pyridinic, FeII | 0.77 | 0.5 mmol L-1 0.1 g L-1 | BPA (10 mg L-1) | 0.397 | •OH | [ |
N-C | pyrolysis of mixture of FePc anchored polystyrene and urea in Ar at 350 and 550 °C | Fe-N4, N-pyridinic, FeII | 2.44 | 1 mmol L-1 0.03 g L-1 | CP (1.3 mg L-1) | 1.663 | O2•-, 1O2 | [ |
N-C | CVD of the pyridine on ferrocene anchored CaO in Ar at 700 °C and acid leaching | Fe-N4 (1.95 Å), N-pyridinic, FeII | 0.61 | 3.25 mmol L-1 0.025 g L-1 | PE (50 mg L-1) | 2.139 | O2•- | [ |
N-C | CVD of mixture of Fe(acac)3 and pyridine on Mg(OH)2 in Ar at 800 °C and acid leaching | Fe-N4 (1.99 Å), N-pyridinic, FeII | 1.23 | 0.3 mmol L-1 0.03 g L-1 | SMX (10 mg L-1) | 0.815 | O2•- | [ |
N-C | pyrolysis of mixture of FeCl3, glucose, and DCD in Ar at 900 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 2.45 | 1 mmol L-1 0.05 g L-1 | NP (20 mg L-1) | 0.302 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl2 and ZnCl2 anchored silk fibroin in Ar at 900 °C and acid leaching | Fe-N4, N-pyridinic, FeII | 0.57 | 15 mmol L-1 0.1 g L-1 | BPA (50 mg L-1) | 1.952 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored COF (TpPa) in N2 at 700 °C | Fe-Nx | 2.14 | 0.65 mmol L-1 0.1 g L-1 | Orange II (20 mg L-1) | — | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3-phen complex anchored ZIF-8 derived carbon in Ar at 600 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 0.71 | 1.3 mmol L-1 0.2 g L-1 | BPA (25 mg L-1) | 0.104 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C and acid leaching | Fe-Nx | 0.56 | 0.65 mmol L-1 0.15 g L-1 | PE (20 mg L-1) | 0.3275 | 1O2 | [ |
N-CNT | pyrolysis of mixture of MIL-101(Fe) and ZIF-8 in N2 at 900 °C and in NH3 at 950 °C | Fe-N4 (2.01 Å), N-pyridinic, FeII | — | 0.5 mmol L-1 0.002 g L-1 | AO7 (50 mg L-1) | 0.811 | 1O2 | [ |
N-C | pyrolysis of mixture of FePc, KHCO3, and N-doped biochar in N2 at 900 °C and acid leaching | Fe-N4 (2.01 Å), N-pyridinic, FeII | 0.41 | 1.95 mmol L-1 0.8 g L-1 | RhB (0.1 g L-1) | 0.661 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 6.32 | 1 mmol L-1 0.1 g L-1 | SSZ (8.0 mg L-1) | 0.095 | 1O2 | [ |
N-C | pyrolysis of Fe(NO3)3 containing aerogel in N2 at 800 °C | Fe-N4 (1.50 Å), N-pyridinic, FeII | 2.17 | 1.3 mmol L-1 0.5 g L-1 | RhB (25 mg L-1) | 19.657 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(OAc)2-phen complex anchored biochar and melamine in N2 at 550 and 700 °C and acid leaching | Fe-N2-O2, Fe-N: 1.92 Å, Fe-O: 2.01 Å, N-pyridinic, FeII | — | 0.5 mmol L-1 0.05 g L-1 | SMX (10 mg L-1) | 0.0862 | 1O2 | [ |
ND | pyrolysis of FePc anchored ND in N2 at 300 °C. | Fe-N4 (1.96 Å), N-pyridinic, FeII | 1.0 | 0.975 mmol L-1 0.06 g L-1 | TC (15 mg L-1) | 0.283 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-glucose complex anchored carbon and melamine in Ar at 800 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 1.12 | 2 mmol L-1 0.05 g L-1 | BPA (22.8 mg L-1) | 1.99 | 1O2, SO4•-, •OH | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in Ar at 900 °C | Fe-Nx | 1.52 | 0.65 mmol L-1 0.15 g L-1 | SMX (10 mg L-1) | 1.1307 | 1O2, O2•-, SO4•-, •OH, ETP | [ |
N-C | pyrolysis of mixture of K2FeO4 and biochar in N2 at 800 °C and acid leaching | Fe-N3, N-graphitic | 2.4 | 1.63 mmol L-1 0.05 g L-1 | PE (20 mg L-1) | 1.096 | Catalyst-PMS* | [ |
N-C | pyrolysis of FePc encapsulated ZIF-8 in Ar at 900 °C | Fe-N4, N-pyridinic, FeII | 0.88 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.3179 | Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-citric acid complex and melamine in N2 at 800 °C | Fe-N4 (1.97 Å), N-pyrrolic, FeII | 4.8 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 8.4 | Catalyst-PMS* | [ |
N-C | pyrolysis of FeCl3 anchored g-C3N4-F127 complex in Ar at 600 °C and acid leaching | Fe-Nx | 2.67 | 0.15 mmol L-1 0.05 g L-1 | BPA (20 mg L-1) | — | Catalyst-PMS*, 1O2 | [ |
N-C | pyrolysis of Fe containing Enteromorpha in N2 at 900 °C and acid leaching | Fe-N2-O2, Fe-N: 2.224 Å, Fe-O: 1.979 Å, N-pyridinic, FeIII | 0.82 | 0.5 mmol L-1 0.1 g L-1 | ACP (10 mg L-1) | 0.1194 | Catalyst-PMS*, FeIV=O | [ |
N-C | pyrolysis of Fe-doped ZIF-8 in Ar at 900 °C | Fe-N4, FeIII | 0.93 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.24 | FeIV=O | [ |
N-CNT | pyrolysis of ball milled Fe-C3N4 and CNT in N2 at 700 °C | Fe-N4 (2.01 Å), N-pyridinic, FeIII | 5.81 | 0.4 mmol L-1 0.02 g L-1 | BPA (11.4 mg L-1) | 6.14 | FeIV=O | [ |
O,N-C | pyrolysis of mixture of FeCl3, DCD, and PMDA in air at 325 °C and acid leaching | Fe-N2-O2, Fe-N: 2.06 Å, Fe-O: 2.03 Å, N-pyridinic, FeII/FeIII | 0.84 | 1.0 mmol L-1 0.5 g L-1 | PE (9.4 mg L-1) | 0.039 | FeIV=O | [ |
N-C | pyrolysis of FeCl3 anchored tannic acid-melamine super-molecule in N2 at 800 °C and acid leaching | Fe-N4 (2.06 Å), N-pyrrolic, FeII | 2.4 | 0.4 mmol L-1 0.16 g L-1 | BPA (22.8 mg L-1) | 7.44 | FeIV=O | [ |
N-C | pyrolysis of Fe(NO3)3-phen complex anchored SBA-15 in N2 at 900 °C and alkaline/acid leaching. | Fe-N4 (1.92 Å), N-pyrrolic, FeIII | 0.62 | 0.1 mmol L-1 0.02 g L-1 | BPA (4.6 mg L-1) | — | FeIV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 800 °C and acid leaching | Fe-N5 (2.01 Å), N-pyridinic, FeIII | 1.2 | 1 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.675 | FeIV=O | [ |
P,S-C | pyrolysis of Fe(NO3)3 anchored and PZS polymers coated ZIF-8 in N2 at 900 °C | Fe-N4 (1.99 Å), N-pyridinic, FeII | — | 0.2 mmol L-1 0.02 g L-1 | OFX (7.2 mg L-1) | 1.68 | FeV=O | [ |
N-C | pyrolysis of mixture of Fe/Zn-lignin complex and DCD in N2 at 550 and 950 °C | Fe-N4 (1.98 Å), N-pyridinic, FeIII | 2.6 | 1 mmol L-1 0.1 g L-1 | CQP (10 mg L-1) | 0.128 | FeV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 700 °C and acid leaching. | Fe-N4 (2.00 Å), N-pyridinic, FeII | 2.0 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 0.274 | FeIV=O, Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe-MOF and melamine in in N2 at 600 °C | Fe-N4 (2.06 Å), N-pyridinic, FeII/FeIII | 5.91 | 0.5 mmol L-1 0.2 g L-1 | BPA (20 mg L-1) | 0.357 | FeV=O, SO4•-, •OH | [ |
Table 1 List of synthetic methods and structure properties of carbon-supported SAICs as well as their performance and mechanism for PMS activation.
Support | Synthetic method | Structure (lM-N) | Loading (wt%) | PMS conc. Cat. dosage | Pollutant (Conc.) | kobs (min-1) | Reactive species | Ref. |
---|---|---|---|---|---|---|---|---|
N-C | pyrolysis of Fe(OAc)2-phen complex anchored O-g-C3N4 in N2 at 600 °C | Fe-N4 (2.00 Å) Fe-Fe N-pyridinic | — | 0.4 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.24 | Surface-bond SO4•-/•OH, 1O2 | [ |
N-C | pyrolysis of mixture of Fe(acac)3 anchored carbon and DCD in N2 at 900 °C | Fe-N4 (2.04 Å) Fe-Fe, N-pyridinic, FeII | 9.0 | 0.4 mmol L-1 0.1 g L-1 | BPA (11.4 mg L-1) | 0.44 | SO4•-, •OH, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored pyrrole-phytic acid hydrogel in N2 at 700 °C and acid leaching | Fe-N3-P1, N-pyridinic, FeII | 2.32 | 0.65 mmol L-1 0.1 g L-1 | BPA (20 mg L-1) | 0.8 | SO4•-, •OH, O2•-, 1O2 | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored carbon black in N2 at 600 °C | Fe-N4 (2.04 Å), N-pyrrolic, FeII | 1.42 | 1.5 mmol L-1 0.1 g L-1 | ACP (7.6 mg L-1) | — | SO4•-, •OH | [ |
N-CNT | pyrolysis of mixture of Fe2(SO4)3, melamine, and O-CNT in N2 at 800 °C and acid leaching | Fe-N3 (1.97 Å), Fe-Fe N-pyridinic, FeII | 1.45 | 0.65 mmol L-1 0.2 g L-1 | PE (9.4 mg L-1) | 2.59 | SO4•-, •OH | [ |
N-C | pyrolysis of PPh3 encapsulated Fe-doped ZIF-8 in Ar at 900 °C and acid leaching | Fe-N3-P1, Fe-N: 1.90 Å, Fe-P: 2.26 Å, N-pyridinic, FeII | 0.77 | 0.5 mmol L-1 0.1 g L-1 | BPA (10 mg L-1) | 0.397 | •OH | [ |
N-C | pyrolysis of mixture of FePc anchored polystyrene and urea in Ar at 350 and 550 °C | Fe-N4, N-pyridinic, FeII | 2.44 | 1 mmol L-1 0.03 g L-1 | CP (1.3 mg L-1) | 1.663 | O2•-, 1O2 | [ |
N-C | CVD of the pyridine on ferrocene anchored CaO in Ar at 700 °C and acid leaching | Fe-N4 (1.95 Å), N-pyridinic, FeII | 0.61 | 3.25 mmol L-1 0.025 g L-1 | PE (50 mg L-1) | 2.139 | O2•- | [ |
N-C | CVD of mixture of Fe(acac)3 and pyridine on Mg(OH)2 in Ar at 800 °C and acid leaching | Fe-N4 (1.99 Å), N-pyridinic, FeII | 1.23 | 0.3 mmol L-1 0.03 g L-1 | SMX (10 mg L-1) | 0.815 | O2•- | [ |
N-C | pyrolysis of mixture of FeCl3, glucose, and DCD in Ar at 900 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 2.45 | 1 mmol L-1 0.05 g L-1 | NP (20 mg L-1) | 0.302 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl2 and ZnCl2 anchored silk fibroin in Ar at 900 °C and acid leaching | Fe-N4, N-pyridinic, FeII | 0.57 | 15 mmol L-1 0.1 g L-1 | BPA (50 mg L-1) | 1.952 | O2•-, 1O2 | [ |
N-C | pyrolysis of FeCl3 anchored COF (TpPa) in N2 at 700 °C | Fe-Nx | 2.14 | 0.65 mmol L-1 0.1 g L-1 | Orange II (20 mg L-1) | — | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3-phen complex anchored ZIF-8 derived carbon in Ar at 600 °C | Fe-N4 (1.97 Å), N-pyridinic, FeII | 0.71 | 1.3 mmol L-1 0.2 g L-1 | BPA (25 mg L-1) | 0.104 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C and acid leaching | Fe-Nx | 0.56 | 0.65 mmol L-1 0.15 g L-1 | PE (20 mg L-1) | 0.3275 | 1O2 | [ |
N-CNT | pyrolysis of mixture of MIL-101(Fe) and ZIF-8 in N2 at 900 °C and in NH3 at 950 °C | Fe-N4 (2.01 Å), N-pyridinic, FeII | — | 0.5 mmol L-1 0.002 g L-1 | AO7 (50 mg L-1) | 0.811 | 1O2 | [ |
N-C | pyrolysis of mixture of FePc, KHCO3, and N-doped biochar in N2 at 900 °C and acid leaching | Fe-N4 (2.01 Å), N-pyridinic, FeII | 0.41 | 1.95 mmol L-1 0.8 g L-1 | RhB (0.1 g L-1) | 0.661 | 1O2 | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in N2 at 900 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 6.32 | 1 mmol L-1 0.1 g L-1 | SSZ (8.0 mg L-1) | 0.095 | 1O2 | [ |
N-C | pyrolysis of Fe(NO3)3 containing aerogel in N2 at 800 °C | Fe-N4 (1.50 Å), N-pyridinic, FeII | 2.17 | 1.3 mmol L-1 0.5 g L-1 | RhB (25 mg L-1) | 19.657 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(OAc)2-phen complex anchored biochar and melamine in N2 at 550 and 700 °C and acid leaching | Fe-N2-O2, Fe-N: 1.92 Å, Fe-O: 2.01 Å, N-pyridinic, FeII | — | 0.5 mmol L-1 0.05 g L-1 | SMX (10 mg L-1) | 0.0862 | 1O2 | [ |
ND | pyrolysis of FePc anchored ND in N2 at 300 °C. | Fe-N4 (1.96 Å), N-pyridinic, FeII | 1.0 | 0.975 mmol L-1 0.06 g L-1 | TC (15 mg L-1) | 0.283 | 1O2 | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-glucose complex anchored carbon and melamine in Ar at 800 °C | Fe-N4 (2.00 Å), N-pyridinic, FeII | 1.12 | 2 mmol L-1 0.05 g L-1 | BPA (22.8 mg L-1) | 1.99 | 1O2, SO4•-, •OH | [ |
N-C | pyrolysis of Fe(acac)3 encapsulated ZIF-8 in Ar at 900 °C | Fe-Nx | 1.52 | 0.65 mmol L-1 0.15 g L-1 | SMX (10 mg L-1) | 1.1307 | 1O2, O2•-, SO4•-, •OH, ETP | [ |
N-C | pyrolysis of mixture of K2FeO4 and biochar in N2 at 800 °C and acid leaching | Fe-N3, N-graphitic | 2.4 | 1.63 mmol L-1 0.05 g L-1 | PE (20 mg L-1) | 1.096 | Catalyst-PMS* | [ |
N-C | pyrolysis of FePc encapsulated ZIF-8 in Ar at 900 °C | Fe-N4, N-pyridinic, FeII | 0.88 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.3179 | Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe(NO3)3-citric acid complex and melamine in N2 at 800 °C | Fe-N4 (1.97 Å), N-pyrrolic, FeII | 4.8 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 8.4 | Catalyst-PMS* | [ |
N-C | pyrolysis of FeCl3 anchored g-C3N4-F127 complex in Ar at 600 °C and acid leaching | Fe-Nx | 2.67 | 0.15 mmol L-1 0.05 g L-1 | BPA (20 mg L-1) | — | Catalyst-PMS*, 1O2 | [ |
N-C | pyrolysis of Fe containing Enteromorpha in N2 at 900 °C and acid leaching | Fe-N2-O2, Fe-N: 2.224 Å, Fe-O: 1.979 Å, N-pyridinic, FeIII | 0.82 | 0.5 mmol L-1 0.1 g L-1 | ACP (10 mg L-1) | 0.1194 | Catalyst-PMS*, FeIV=O | [ |
N-C | pyrolysis of Fe-doped ZIF-8 in Ar at 900 °C | Fe-N4, FeIII | 0.93 | 1.3 mmol L-1 0.15 g L-1 | BPA (20 mg L-1) | 0.24 | FeIV=O | [ |
N-CNT | pyrolysis of ball milled Fe-C3N4 and CNT in N2 at 700 °C | Fe-N4 (2.01 Å), N-pyridinic, FeIII | 5.81 | 0.4 mmol L-1 0.02 g L-1 | BPA (11.4 mg L-1) | 6.14 | FeIV=O | [ |
O,N-C | pyrolysis of mixture of FeCl3, DCD, and PMDA in air at 325 °C and acid leaching | Fe-N2-O2, Fe-N: 2.06 Å, Fe-O: 2.03 Å, N-pyridinic, FeII/FeIII | 0.84 | 1.0 mmol L-1 0.5 g L-1 | PE (9.4 mg L-1) | 0.039 | FeIV=O | [ |
N-C | pyrolysis of FeCl3 anchored tannic acid-melamine super-molecule in N2 at 800 °C and acid leaching | Fe-N4 (2.06 Å), N-pyrrolic, FeII | 2.4 | 0.4 mmol L-1 0.16 g L-1 | BPA (22.8 mg L-1) | 7.44 | FeIV=O | [ |
N-C | pyrolysis of Fe(NO3)3-phen complex anchored SBA-15 in N2 at 900 °C and alkaline/acid leaching. | Fe-N4 (1.92 Å), N-pyrrolic, FeIII | 0.62 | 0.1 mmol L-1 0.02 g L-1 | BPA (4.6 mg L-1) | — | FeIV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 800 °C and acid leaching | Fe-N5 (2.01 Å), N-pyridinic, FeIII | 1.2 | 1 mmol L-1 0.1 g L-1 | SMX (10 mg L-1) | 0.675 | FeIV=O | [ |
P,S-C | pyrolysis of Fe(NO3)3 anchored and PZS polymers coated ZIF-8 in N2 at 900 °C | Fe-N4 (1.99 Å), N-pyridinic, FeII | — | 0.2 mmol L-1 0.02 g L-1 | OFX (7.2 mg L-1) | 1.68 | FeV=O | [ |
N-C | pyrolysis of mixture of Fe/Zn-lignin complex and DCD in N2 at 550 and 950 °C | Fe-N4 (1.98 Å), N-pyridinic, FeIII | 2.6 | 1 mmol L-1 0.1 g L-1 | CQP (10 mg L-1) | 0.128 | FeV=O | [ |
N-C | pyrolysis of Fe(OAc)2-phen complex anchored nano-MgO in N2 at 700 °C and acid leaching. | Fe-N4 (2.00 Å), N-pyridinic, FeII | 2.0 | 0.5 mmol L-1 0.1 g L-1 | BPA (22.8 mg L-1) | 0.274 | FeIV=O, Catalyst-PMS* | [ |
N-C | pyrolysis of mixture of Fe-MOF and melamine in in N2 at 600 °C | Fe-N4 (2.06 Å), N-pyridinic, FeII/FeIII | 5.91 | 0.5 mmol L-1 0.2 g L-1 | BPA (20 mg L-1) | 0.357 | FeV=O, SO4•-, •OH | [ |
Fig. 3. Fe loading (a), Fe-N bond length (b), and coordination structure (c) of single atom Fe sites in the reported SAICs for PMS activation (n: sampling number; Med.: the median value). (d) The model of a Fe-N4 site with four pyridinic N coordination. (e) The charge density difference around the metal site with the Bader charge value at Fe atom. (f) The electrostatic potentials of a Fe-N4 site and PMS molecule. Reprinted with permission from Ref. [144]. Copyright 2022 Elsevier Inc.
Fig. 5. The involved reactive species (a) and the Sankey diagram correlating the structure (b) of single-atom Fe sites with the generated ROS in SAICs/PMS systems.
Fig. 6. (a) PMS adsorption on a Fe-N4 site with hydroxy O, peroxy O and terminal O, and the corresponding adsorption energies and charge transfer numbers. (b) Pathways for the ROS generation on a Fe-N4 site. (c) Energy requirements for different ROS generation. Reprinted with permission from Ref. [144]. Copyright 2022, Elsevier Inc.
Fig. 7. Fundamentals of radical generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for their facilitated generation. Reprinted with permission from Ref. [111,113]. Copyright 2023, Elsevier Inc.
Fig. 8. In situ Raman spectra of the PMS interaction with SAIC (a) and the formation of surface-bound SO4* intermediate (b,c) during the generation of SO4?-. Reprinted with permission from Ref. [111,113]. Copyright 2023, Elsevier Inc. Reprinted with permission from Ref. [108]. Copyright 2021, American Chemical Society.
Fig. 9. (a) Generation of 1O2 on a Fe-N4 site through recombination of two SO5?- intermediates. Reprinted with permission from Ref. [123]. Copyright 2022, Elsevier Inc. (b) Generation of 1O2 in the O* combination mechanism. Reprinted with permission from Ref. [27]. Copyright 2021, John Wiley and Sons. (c) Generation of 1O2 from O2?- intermediates. Reprinted with permission from Ref. [127]. Copyright 2021, American Chemical Society. (d) Generation of 1O2 from dissolved O2. Reprinted with permission from Ref. [126]. Copyright 2023, American Chemical Society.
Fig. 10. Fundamentals of 1O2 generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [125]. Copyright 2023, Elsevier Inc.
Fig. 11. (a) EPR detection of O2?- as an intermediate for 1O2 generation. Reprinted with permission from Ref. [126]. Copyright 2022, American Chemical Society. (b,c) Proposed intermediates and reaction pathways for 1O2 generation based on the DFT calculation. Reprinted with permission from Ref. [27]. Copyright 2021, John Wiley and Sons.
Fig. 12. Fundamentals of catalyst-PMS* generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [129,133]. Copyright 2021, Elsevier Inc.
Fig. 13. (a) In situ Raman spectra for the detection of the catalyst-PMS* complex. Reprinted with permission from Ref. [130]. Copyright 2021, Elsevier Inc. (b) Open-circuit potential measurements to quantitatively determine the oxidation potential of the complex. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons.
Fig. 14. (a) Generation of FeIV=O/FeV=O on a Fe-N4 site by heterolytic cleavage of the O-O bond of a Fe-N4-PMS complex. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier Inc. (b) Effect of spin-state of Fe sites for FeIV=O/FeV=O generation. Reprinted with permission from Ref. [143]. Copyright 2021, American Chemical Society. (c) Generation of FeIV=O on the adjacent Fe-N4 sites with Fe1-Fe1 distance of 4.1 ? through forming dual-site adsorption structure. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons.
Fig. 15. Fundamentals of HVI generation on a Fe-N4 site as well as the strategy and mechanism of modulating the active site structure for its facilitated generation. Reprinted with permission from Ref. [136]. Copyright 2021, Elsevier Inc. Reprinted with permission from Ref. [138]. Copyright 2022, John Wiley and Sons. Reprinted with permission from ref [139]. Copyright 2023, John Wiley and Sons.
Fig. 16. (a) In situ Raman detection of FeIV=O. Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons. (b) Time-resolved Raman spectra for the observation of the evolution of FeIV=O. Reprinted with permission from Ref. [135]. Copyright 2021, American Chemical Society. (c) Time-resolved Raman and synchrotron radiation-based FTIR spectra to identify HSO4- intermediate during high-valent metal-oxo species formation. Reprinted with permission from Ref. [167]. Copyright 2023, John Wiley and Sons.
|
[1] | 张俊磊, 刘文聪, 刘彪, 段晓光, 敖志敏, 朱明山. 单原子活化过一硫酸盐性能更好?与金属氧化物耦合可能更高效[J]. 催化学报, 2024, 59(4): 137-148. |
[2] | 刘玉庭, 聂贝黎, 李宁, 刘慧芳, 王峰. 氯自由基介导的光催化芳基醚C(sp3)-H氧化生成酯[J]. 催化学报, 2024, 58(3): 123-128. |
[3] | 周双龙, 赵亮, 吕征, 代钰, 张琦, 赖建平, 王磊. 局部氧自由基的性质促进电催化乙醇选择性生成CO2[J]. 催化学报, 2023, 52(9): 154-163. |
[4] | 关志朋, 杨东锋, 刘钊, 朱书祥, 仲星星, 王华敏, 李向伟, 戚孝天, 易红, 雷爱文. 区域选择性地电化学氧化自由基参与的邻位-(4 + 2)/原位-(3 + 2)环化[J]. 催化学报, 2023, 52(9): 144-153. |
[5] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[6] | 张丽丽, 李雨杭, 郭镇宇, 李艳涛, 李埝, 李伟鹏, 朱成建, 谢劲. 光催化酰基自由基与缺电子1,3-二烯的选择性1,6-加成反应实现羧酸的脱氧烯丙基化[J]. 催化学报, 2023, 50(7): 215-221. |
[7] | 曾繁林, 朱虎林, 王茹楠, 袁晓亚, 孙凯, 屈凌波, 陈晓岚, 於兵. 一种用于光催化C(sp2)‒H键官能团化通用的非均相钒酸铋催化剂[J]. 催化学报, 2023, 46(3): 157-166. |
[8] | 黄志鹏, 杨阳, 穆骏驹, 李根恒, 韩建宇, 任濮宁, 张健, 罗能超, 韩克利, 王峰. 利用金属-自由基相互作用调控自由基的定向转化[J]. 催化学报, 2023, 45(2): 120-131. |
[9] | 池海波, 王旺银, 马江平, 段睿智, 丁春梅, 宋睿, 李灿. 光电催化脱氟-氧化过程实现氟芳烃污染物的高效矿化[J]. 催化学报, 2023, 55(12): 171-181. |
[10] | 张颖贞, 黄剑莹, 赖跃坤. 氨氧化技术在清洁能源开发和污水净化中的研究进展[J]. 催化学报, 2023, 54(11): 161-177. |
[11] | 郑子叶, 田爽, 冯玉晓, 赵珊, 李鑫, 王曙光, 何作利. 光催化耦合技术在废水处理中的最新进展[J]. 催化学报, 2023, 54(11): 88-136. |
[12] | 刘伟旭, 贺唱, 朱博文, 朱恩伟, 张亚宁, 陈云宁, 李军山, 朱永法. 利用有机超分子光催化剂在太阳光下处理污水的研究进展[J]. 催化学报, 2023, 53(10): 13-30. |
[13] | 田昊, 徐冰君. 六方氮化硼催化的乙烷丙烷共脱氢: 一种C-H键活化和机理研究的有效手段[J]. 催化学报, 2022, 43(8): 2173-2182. |
[14] | 吴鹏, 张锦岩, 陈倩倩, 彭炜, 王斌举. 对比生物体系以及合成体系中单核铜氧物种对碳氢键和氧氢键活化的理论研究展望[J]. 催化学报, 2022, 43(4): 913-927. |
[15] | 王芃梓, 肖文精, 陈加荣. 基于1,3-二烯的自由基反应的近期研究进展[J]. 催化学报, 2022, 43(3): 548-557. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||