催化学报 ›› 2024, Vol. 66: 1-19.DOI: 10.1016/S1872-2067(24)60130-0
• 综述 • 下一篇
吴汪洋a, 杨世丹a, 钱慧丹a, 张伶a,*(), 彭立山b,*(
), 李莉a,*(
), 刘彬c, 魏子栋a
收稿日期:
2024-07-27
接受日期:
2024-08-29
出版日期:
2024-11-18
发布日期:
2024-11-10
通讯作者:
*电子信箱: zhanglinggood@cqu.edu.cn (张伶),liliracial@cqu.edu.cn (李莉),lspeng@gia.cas.cn (彭立山).
基金资助:
Wangyang Wua, Shidan Yanga, Huidan Qiana, Ling Zhanga,*(), Lishan Pengb,*(
), Li Lia,*(
), Bin Liuc, Zidong Weia
Received:
2024-07-27
Accepted:
2024-08-29
Online:
2024-11-18
Published:
2024-11-10
Contact:
*E-mail: About author:
Ling Zhang (School of Chemistry and Chemical Engineering, Chongqing University) received his B.S. and Ph. D. degrees from Nanjing Tech University in 2014 and Chongqing University in 2022, respectively. Currently, he is a postdoctoral at Chongqing University. His current research interests focus on developing high-performance HER/OER electrocatalysts.Supported by:
摘要:
能源需求增加和化石能源燃烧, 造成了严重的环境问题, 威胁人类社会的可持续发展. 开发以氢能为代表的可再生能源是解决人类社会面临的环境危机的必然选择. 电解水制氢耦合风能、太阳能、潮汐能等可再生能源是一种环境友好、可持续的“绿氢”生产方法. 然而, 目前析氢催化剂活性/稳定性差, 制约了电解水制氢技术的大规模应用. 富含异质界面的析氢催化剂具有丰富的物化性质、便于调控的电子结构以及不同活性位点间的协同效应, 受到研究者的广泛关注. 本综述系统地梳理和总结了富含异质界面的碱性析氢催化剂以及电极/溶液界面的研究进展, 对进一步推动该领域的研究具有重要意义.
本文主要从碱性析氢反应机理、活性调控策略以及对未来的展望三个方面进行总结和讨论. 首先简要总结了碱性析氢反应机理, 详细论述了反应动力学缓慢的三个原因: (1) 额外的水解离能垒; (2) 过高的界面水分子重组能; (3) 氢键网络的破坏提高了质子转移的能垒. 其次, 概括了目前两类异质界面型析氢催化剂的活性增强策略: (1) 增强异质界面间多组分协同、内建电场与氢溢流; (2) 促进催化剂/电解液界面间水分子富集、再定向与活化. 前者主要通过界面间电荷转移现象来优化各自组分的电子结构, 进而调控活性位点与反应中间体的吸附与解吸能垒, 以优化析氢催化剂动力学; 后者涉及水分子在催化剂界面上的结构排列, 通过增强催化剂/电解液界面电场, 促进水分子在催化剂表面富集, 调控水分子吸附构型, 活化水分子, 降低水分子解离能垒, 提高析氢催化剂的反应活性. 详细汇总了各个策略背后涉及的电荷转移、界面匹配、活性位点微环境优化等机理. 同时, 分别指出了四种调控策略的不足: (1) 基于多组分协同、内建电场与氢溢流效应的策略, 缺乏精确定制异质界面组成、数量的方法, 难以确定电场对析氢反应活性增强的确切机制, 缺少电场方向和强度对析氢活性影响机制的研究, 导致水分子解离、活性氢生成、活性氢迁移和释放四个过程难平衡; (2) 现有表征难以探究界面水分子在催化剂/溶液界面的精确结构及其随时间演变的规律.
综上, 本文系统总结了富含异质界面的析氢催化剂的优势、研究进展以及目前存在的挑战: 如何保证富含异质界面的析氢催化剂在高温、高碱性以及强极化条件下的稳定性. 希望通过本综述推动相关研究人员进一步思考, 并为进一步推动富含异质界面的析氢催化剂在碱水电解制氢中研究, 为开发高活性、高稳定性富含异质界面的析氢催化剂提供一定的参考和借鉴.
吴汪洋, 杨世丹, 钱慧丹, 张伶, 彭立山, 李莉, 刘彬, 魏子栋. 碱性电解水析氢反应先进电催化剂的界面工程研究[J]. 催化学报, 2024, 66: 1-19.
Wangyang Wu, Shidan Yang, Huidan Qian, Ling Zhang, Lishan Peng, Li Li, Bin Liu, Zidong Wei. Interface engineering of advanced electrocatalysts toward alkaline hydrogen evolution reactions[J]. Chinese Journal of Catalysis, 2024, 66: 1-19.
Fig. 1. Schematic diagram of HER mechanisms in alkaline media (a), and reasons for sluggish alkaline HER kinetics (b). The O, H, H*, and Na+/K+ are colored pink, light green, green, and purple, respectively.
Fig. 2. (a) Side view of RuO2/Ni (001). (b) Differential charge density of RuO2/Ni (001) projected on the side view. (c) A “Chimney Effect” at the interface. Reprinted with permission from Ref. [87]. Copyright 2019, Elsevier. (d) Chemisorption models of H and OH intermediates on the surfaces of NiMoPOx and the Ni(OH)2/NiMoPOx hybrid. Calculated adsorption energy diagram of the water dissociation step (e) and hydrogen ad-desorption (f). (g) Electrode surface area-normalized polarization curves in 1.0 mol L-1 KOH aqueous solution. (h) Calculated free energy of hydrogen ad-desorption. Reprinted with permission from Ref. [88]. Copyright 2020, Royal Society of Chemistry.
Fig. 3. (a) Charge density distributions between Ru2P/WO3 and different substrates (C, NPC) with a value of 0.002 e?-3. Green represents positive charges and red represents negative charges. (b) Kinetic barriers of water dissociation on the active sites of different catalysts. (c) Calculated Gibbs free energy diagrams for the HER at equilibrium potential vs. RHE for different catalysts. (d) Proposed HER mechanism in alkaline media for the Ru2P/WO3@NPC nanocomposite. Reprinted with permission from Ref. [90]. Copyright 2020, John Wiley and Sons. (e) PDOS of Ru d band and the corresponding band center for MoO2@Ru, MoO2/MoO3@Ru, and MoO3@Ru. (f,g) Water dissociation energies and *H adsorption free energy of different catalysts. (h) Schematic diagram of the mechanism of enhanced HER for MoO2@Ru. Reprinted with permission from Ref. [92]. Copyright 2023, John Wiley and Sons.
Fig. 4. (a) BEF for Ni metal and MoO2 semiconductor. (b) Polarization curves for the HER. Reprinted with permission from Ref. [100]. Copyright 2023, Elsevier. (c) HRTEM image of Ni2P-CoCH/CFP. (d) Energy band diagram of Ni2P and CoCH. (e) Charge density difference plot at the Ni2P-CoCH interface. (f) The calculated H* adsorption Gibbs free energy. (g) Charge density difference plot at the WO3/Ni2P interface. Free energy diagrams of water dissociation (h) and hydrogen adsorption (i). Reprinted with permission from Ref. [101]. Copyright 2023, John Wiley and Sons.
Fig. 5. (a) BEF for Os metal and OsSe2 alloy. (b) Gibbs free energies of HER on Os sites. Reprinted with permission from Ref. [103]. Copyright 2022, John Wiley and Sons. (c) UPS spectra. (d) Diagram of electron redistribution in the Ru NCs/P,O-NiFe LDH. (e) Differential charge density of the Ru NCs/P,O-NiFe LDH. (f) Free energy diagram for HER on different catalysts. (g) HER polarization curves. Reprinted with permission from Ref. [104]. Copyright 2023, John Wiley and Sons.
Fig. 6. Charge-density difference diagram (a) and Plane‐averaged electronic potential (b) along the perpendicular direction of NiS2-ReS2 and NiS2-ReS2-V (V represents Re vacancies). Free energy diagrams of water dissociation (c) and hydrogen adsorption (d). Reprinted with permission from Ref. [106]. Copyright 2024, John Wiley and Sons.
Fig. 7. (a) Diagram of hydrogen spillover. Reprinted with permission from Ref. [114]. Copyright 2024, John Wiley and Sons. (b) Plots of Cφ vs. η of different catalysts. (c) Calculated free energy for HER on Pt/CoP and Pt2Ir1/CoP. (d) Electron density difference map of interfaces. (e) The optimized H* adsorption spillover. Reprinted with permission from Ref. [42]. Copyright 2021, Springer Nature.
Fig. 8. (a) Work function diagram between Ru and MoO2. (b) Energy barriers for HER on different sites. (c) Fitted data of Cφ vs. η. (d) CV curve of Ru/MoO2. Reprinted with permission from Ref. [114]. Copyright 2024, John Wiley and Sons. (e) Energy barriers for water dissociation on the Ru site. (f) Energy barriers for H* adsorption on Ru site. (g) Hydrogen spillover energy barrier with and without potential. Reprinted with permission from Ref. [98]. Copyright 2024, John Wiley and Sons.
Fig. 9. (a) Calculated free energy for H* on different sites. Reprinted with permission from Ref. [116]. Copyright 2021, John Wiley and Sons. (b) The differential charge density distributions between Ru and NiMoO4-x and NiMoO4. (c) Calculated free energy diagram of Ru/NiMoO4-x and Ru/NiMoO4-x. (d) Diagram of the possible path of hydrogen spillover. Reprinted with permission from Ref. [112]. Copyright 2023, John Wiley and Sons.
Fig. 10. (a) Calculated free energy diagram for HER. Reprinted with permission from Ref. [41]. Copyright 2022, Springer Nature. HER mechanism (b) and reaction energy (c) on different sites. Reprinted with permission from Ref. [117]. Copyright 2024, Royal Society of Chemistry.
Fig. 11. Laser-induced coulostatic potential transients collected for the Pt (111) (a) and Pt(111)/Ni(OH)2 (b). Reprinted with permission from Ref. [53]. Copyright 2017, Springer Nature. (c) In situ electrochemical Raman spectra (grey curves) of the O-H stretching mode. (d) AIMD simulations and in situ electrochemical Raman spectra of the hydrogen-bond network of interfacial water. Reprinted with permission from Ref. [124]. Copyright 2019, Springer Nature.
Fig. 12. In situ electrochemical Raman spectra at different catalyst surfaces in 0.1 mol L-1 HClO4 (a) and 0.1 mol L-1 NaOH (b,c). (d,e) In situ electrochemical Raman spectra of the O-H stretching mode in catalysts with different Ni contents. Reprinted with permission from Ref. [55]. Copyright 2020, John Wiley and Sons.
Fig. 13. (a) Simulated distribution of potential and hydrated K+ concentration for TiO2-Pt/C. (b) The energy barrier of water dissociation. (c) Radial distribution function of interface water structure in KOH solution. (d) The energy barrier of H* ad-desorption. Reprinted with permission from Ref. [131]. Copyright 2022, American Chemcial Society. (e) Charge density analyses of CoP and IrRu. (f) Interfacial water orientation simulated by AIMD. (g) The energy barrier of water dissociation. Reprinted with permission from Ref. [132]. Copyright 2023, John Wiley and Sons.
Strategy | Catalyst | η10 (mV) | η100 (mV) | η500 (mV) | Year | Ref. |
---|---|---|---|---|---|---|
Synergistic effects | Ni/Ni(OH)2 | 77 | ~150 | — | 2020 | [ |
(Ru-Co)Ox | 44 | 89 | — | 2020 | [ | |
Ni(OH)x/NiNiPOx | 51 | 72 | — | 2020 | [ | |
Ru2P/WO3/NPC | 15 | — | — | 2021 | [ | |
Pt-Co/CoOx | 28 | — | — | 2021 | [ | |
CoFe-LDH@NiSe | 38 | ~250 | — | 2022 | [ | |
Ni/NiO-cp | 72 | ~180 | — | 2022 | [ | |
MoO2@Ru NT | 22 | ~50 | 89 | 2023 | [ | |
Co/CoO/Co2Mo3O8 | 78 | 213 | ~280 | 2023 | [ | |
CFO/CoFe-LDH | — | 188 | ~280 | 2024 | [ | |
BEF | Os-OsSe2 | 23 | — | — | 2022 | [ |
Ru-CMOP | — | 114 | 183 | 2022 | [ | |
Ni2P/Ni5P4 | 62 | 166 | 380 | 2023 | [ | |
Ni2P-CoCH/CFP | 62 | 143 | — | 2023 | [ | |
RuNCs/P,O-NiFe LDH/NF | 29 | 200 | — | 2024 | [ | |
NiS2‐ReS2‐V | 42 | 140 | — | 2024 | [ | |
20-WO3/Ni2P/NF | — | 180 | 269 | 2024 | [ | |
Mo5N6-Ni3S2 HNPs/NF | 59 | 300 | — | 2024 | [ | |
Hydrogen spillover | Pt/CoP | 21 | ~100 | — | 2019 | [ |
PtIr/CoP | 5 | 50 | — | 2021 | [ | |
Ni3S2/Cr2S3 | 55 | 160 | 207 | 2022 | [ | |
Cr, Fe-CoP/NF | 27 | ~95 | ~140 | 2024 | [ | |
Ru1-Mo2C | 11 | 57 | — | 2024 | [ | |
Ru/MoO2 | 9 | 110 | — | 2024 | [ | |
Water regulation | TiO2-Pt/C | 26 | ~60 | 100 | 2022 | [ |
IrRu DSACs | 10 | 78 | 286 | 2023 | [ |
Table 1 Comparison between Alkaline HER catalysts of various strategies in 1 mol L-1 KOH (The overpotential values with the symbol (~) are extracted from their corresponding LSV plots).
Strategy | Catalyst | η10 (mV) | η100 (mV) | η500 (mV) | Year | Ref. |
---|---|---|---|---|---|---|
Synergistic effects | Ni/Ni(OH)2 | 77 | ~150 | — | 2020 | [ |
(Ru-Co)Ox | 44 | 89 | — | 2020 | [ | |
Ni(OH)x/NiNiPOx | 51 | 72 | — | 2020 | [ | |
Ru2P/WO3/NPC | 15 | — | — | 2021 | [ | |
Pt-Co/CoOx | 28 | — | — | 2021 | [ | |
CoFe-LDH@NiSe | 38 | ~250 | — | 2022 | [ | |
Ni/NiO-cp | 72 | ~180 | — | 2022 | [ | |
MoO2@Ru NT | 22 | ~50 | 89 | 2023 | [ | |
Co/CoO/Co2Mo3O8 | 78 | 213 | ~280 | 2023 | [ | |
CFO/CoFe-LDH | — | 188 | ~280 | 2024 | [ | |
BEF | Os-OsSe2 | 23 | — | — | 2022 | [ |
Ru-CMOP | — | 114 | 183 | 2022 | [ | |
Ni2P/Ni5P4 | 62 | 166 | 380 | 2023 | [ | |
Ni2P-CoCH/CFP | 62 | 143 | — | 2023 | [ | |
RuNCs/P,O-NiFe LDH/NF | 29 | 200 | — | 2024 | [ | |
NiS2‐ReS2‐V | 42 | 140 | — | 2024 | [ | |
20-WO3/Ni2P/NF | — | 180 | 269 | 2024 | [ | |
Mo5N6-Ni3S2 HNPs/NF | 59 | 300 | — | 2024 | [ | |
Hydrogen spillover | Pt/CoP | 21 | ~100 | — | 2019 | [ |
PtIr/CoP | 5 | 50 | — | 2021 | [ | |
Ni3S2/Cr2S3 | 55 | 160 | 207 | 2022 | [ | |
Cr, Fe-CoP/NF | 27 | ~95 | ~140 | 2024 | [ | |
Ru1-Mo2C | 11 | 57 | — | 2024 | [ | |
Ru/MoO2 | 9 | 110 | — | 2024 | [ | |
Water regulation | TiO2-Pt/C | 26 | ~60 | 100 | 2022 | [ |
IrRu DSACs | 10 | 78 | 286 | 2023 | [ |
|
[1] | 毛思航, 赫荣安, 宋少青. S型异质结界面超快电子转移促进人工光合成[J]. 催化学报, 2024, 64(9): 1-3. |
[2] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. 聚乙烯亚胺辅助合成包含多尺寸Ni物种的中空碳球用于CO2电还原[J]. 催化学报, 2024, 64(9): 66-76. |
[3] | 田文柔, 韩俊, 李娜君, 陈冬赟, 徐庆锋, 李华, 路建美. 通过温度依赖性自转化在SnS2/SnS上进行界面工程以增强压电催化[J]. 催化学报, 2024, 64(9): 166-179. |
[4] | 戴昊, 宋涛, 乐弦, 李福智, 魏淑婷, 徐延超, 舒偲妍, 崔子昂, 王成, 顾均, 段乐乐. 含氮石墨炔上构建Cu-N2单原子电催化剂用于CO2还原制CH4[J]. 催化学报, 2024, 64(9): 123-132. |
[5] | 郎程广, 许彦桐, 姚向东. 通过缺陷优化析氢反应电催化剂: 最新研究进展与展望[J]. 催化学报, 2024, 64(9): 4-31. |
[6] | 霍韵滢, 郭聪, 张永乐, 刘婧怡, 张巧, 刘芝婷, 杨光星, 李仁贵, 彭峰. 自支撑Ni(OH)2/NF催化剂高效电催化氧化5-羟甲基糠醛反应研究[J]. 催化学报, 2024, 63(8): 282-291. |
[7] | 肖佳勇, 蒋超, 张辉, 邢卓, 邱明, 余颖. 具有亲水性的无定形棒状核壳结构NiMoP@CuNWs用于中性介质中高效析氢[J]. 催化学报, 2024, 63(8): 154-163. |
[8] | 黄子超, 杨婷惠, 张颖冰, 管超群, 桂文科, 况敏, 杨建平. 提高酸性CO2电解的选择性:阳离子效应和催化剂创新[J]. 催化学报, 2024, 63(8): 61-80. |
[9] | 任清汇, 徐亮, 吕梦雨, 张秩远, 栗振华, 邵明飞, 段雪. 电催化还原反应中的阳离子效应:最新进展[J]. 催化学报, 2024, 63(8): 16-32. |
[10] | 李志鹏, 刘晓斌, 于青平, 屈欣悦, 万均, 肖振宇, 迟京起, 王磊. 用于高电流密度析氢反应电催化剂的研究进展[J]. 催化学报, 2024, 63(8): 33-60. |
[11] | 陈昕煜, 赵聪聪, 任静, 李波, 刘倩倩, 李葳, 杨帆, 陆思琦, 赵宇飞, 颜力楷, 臧宏瑛. 富含氧空位的由多金属氧簇辅助的银基异质结用于高效电催化固氮[J]. 催化学报, 2024, 62(7): 209-218. |
[12] | 梅子雯, 陈克军, 谭耀, 刘秋文, 陈琴, 王其忧, 汪喜庆, 蔡超, 刘康, 傅俊伟, 刘敏. 从富含缺陷的碳载体到酞菁钴的质子供给用于增强CO2电还原[J]. 催化学报, 2024, 62(7): 190-197. |
[13] | 杨树姣, 江鹏飞, 岳楷航, 郭凯, 杨璐娜, 韩金秀, 彭欣阳, 张学鹏, 郑浩铨, 杨韬, 曹睿, 严雅, 张伟. 多配位水分子的焦磷酸锰用于电催化水氧化研究[J]. 催化学报, 2024, 62(7): 166-177. |
[14] | 朱鸿睿, 徐慧民, 黄陈金, 张志杰, 詹麒尼, 帅婷玉, 李高仁. 光电催化析氧和CO2还原反应催化剂的研究进展[J]. 催化学报, 2024, 62(7): 53-107. |
[15] | 陈振霖, 薛静, 武磊, 党昆, 籍宏伟, 陈春城, 章宇超, 赵进才. 协同光电及热效应实现铜光阴极上等离激元催化高效硝酸根还原反应[J]. 催化学报, 2024, 62(7): 219-230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||