催化学报 ›› 2025, Vol. 71: 197-207.DOI: 10.1016/S1872-2067(24)60264-0

• 论文 • 上一篇    下一篇

基于图神经网络的高性能二氧化碳还原高熵合金催化剂预测

焦自浩a,b, 张成翼b, 刘亚a, 郭烈锦a,*(), 王子运b,*()   

  1. a动力工程多相流国家重点实验室, 陕西西安 710049, 中国
    b奥克兰大学化学科学学院, 奥克兰 1010, 新西兰
  • 收稿日期:2024-11-05 接受日期:2024-12-18 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: lj-guo@mail.xjtu.edu.cn (郭烈锦), ziyun.wang@auckland.ac.nz (王子运).
  • 基金资助:
    马尔斯登基金委员会(21-UOA-237);种子计划通用资助(22-UOA-031-CGS)

Graph neural network-driven prediction of high-performance CO2 reduction catalysts based on Cu-based high-entropy alloys

Zihao Jiaoa,b, Chengyi Zhangb, Ya Liua, Liejin Guoa,*(), Ziyun Wangb,*()   

  1. aInternational Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Shaanxi 710049, China
    bSchool of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
  • Received:2024-11-05 Accepted:2024-12-18 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: lj-guo@mail.xjtu.edu.cn (L. Guo), ziyun.wang@auckland.ac.nz (Z. Wang).

摘要:

本文针对铜基高熵合金(HEA)在CO2还原反应中的催化性能, 探讨了其可调组成和表面结构对催化活性的提升作用. 由于HEA材料的表面复杂性及元素偏析倾向, 导致体相与表面组成不一致, 这为通过密度泛函理论进行直接研究带来了挑战. 本研究旨在克服这些困难, 探索如何通过模拟和机器学习方法优化HEA催化剂的设计.
为了模拟表面元素的分离行为, 本文采用了蒙特卡罗模拟与分子动力学相结合的方式, 涵盖了包括Cu, Ag, Au, Pt, Pd和Al在内的多个元素. 通过这一方法, 揭示了表面偏析倾向的规律: Ag > Au > Al > Cu > Pd > Pt. 为了解析表面位点特征与多齿CO2还原中间体自由能之间的关系, 设计了一个基于图神经网络的模型, 其中吸附物被转化为位于其质心的伪原子. 该模型在C2中间体自由能预测中取得了0.08-0.15 eV的平均绝对误差, 能够精准量化表面位点活性. 结果表明, 增加Cu, Ag和Al的浓度显著提高了CO和C2的生成活性, 而Au, Pd和Pt则表现出抑制作用. 对于产氢(HER)反应, Al和Au是关键调节因子: 提高Au含量或降低Al含量有助于提升HER活性; 而Pd含量的增加或Au含量的减少则促进了甲酸的生成. 此外, 通过筛选稳定的组成空间, 研究还预测了比纯Cu催化剂更具催化活性的HEA体相组成, 适用于CO, HCOOH和C2产品的生成.
综上, HEA通过其可调的组成和表面结构能够有效促进CO2还原反应, 尽管表面组成和元素分离带来了挑战, 蒙特卡罗模拟与图神经网络的结合提供了一个高效的催化剂设计框架. 本文不仅为HEA催化剂的理性设计提供了理论依据, 还为高通量筛选具有优异催化性能的HEA电催化剂奠定了基础.

关键词: 密度泛函理论, 机器学习, CO2还原, 高熵合金, 图神经网络

Abstract:

High-entropy alloy (HEA) offer tunable composition and surface structures, enabling the creation of novel active sites that enhance catalytic performance in renewable energy application. However, the inherent surface complexity and tendency for elemental segregation, which results in discrepancies between bulk and surface compositions, pose challenges for direct investigation via density functional theory. To address this, Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements, including Cu, Ag, Au, Pt, Pd, and Al. The analysis revealed a trend in surface segregation propensity following the order Ag > Au > Al > Cu > Pd > Pt. To capture the correlation between surface site characteristics and the free energy of multi-dentate CO2 reduction intermediates, a graph neural network was designed, where adsorbates were transformed into pseudo-atoms at their centers of mass. This model achieved mean absolute errors of 0.08-0.15 eV for the free energies of C2 intermediates, enabling precise site activity quantification. Results indicated that increasing the concentration of Cu, Ag, and Al significantly boosts activity for CO and C2 formation, whereas Au, Pd, and Pt exhibit negative effects. By screening stable composition space, promising HEA bulk compositions for CO, HCOOH, and C2 products were predicted, offering superior catalytic activity compared to pure Cu catalysts.

Key words: Density functional theory, Machine learning, CO2 reduction, High entropy alloys, Graph neural network