催化学报 ›› 2025, Vol. 75: 34-48.DOI: 10.1016/S1872-2067(25)64686-9

• 论文 • 上一篇    下一篇

揭示Au/LaMnCuO3催化剂在乙醇选择氧化反应中的Au-Mn-Cu协同作用

王杰a,1, 陈露露b,1, 岳丽君a, Ivo A. W. Filotb, Emiel J. M. Hensenb,*(), 刘鹏a,*()   

  1. a华中科技大学化学与化工学院, 能量转换与存储材料化学教育部重点实验室, 湖北武汉 430074, 中国
    b埃因霍温理工大学化学工程与化学系, 无机材料与催化实验室, 埃因霍温, 荷兰
  • 收稿日期:2025-02-19 接受日期:2025-03-05 出版日期:2025-08-18 发布日期:2025-07-22
  • 通讯作者: *电子信箱: pengliu@hust.edu.cn (刘鹏), e.j.m.hensen@tue.nl (E. Hensen).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(21972050);华中科技大学学术前沿青年团队项目(2018QYTD03)

Unveiling the Au-Mn-Cu synergy in Au/LaMnCuO3 catalysts for selective ethanol oxidation

Wang Jiea,1, Chen Lulub,1, Yue Lijuna, A. W. Filot Ivob, J. M. Hensen Emielb,*(), Liu Penga,*()   

  1. aKey Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    bLaboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
  • Received:2025-02-19 Accepted:2025-03-05 Online:2025-08-18 Published:2025-07-22
  • Contact: *E-mail: pengliu@hust.edu.cn (P. Liu), e.j.m.hensen@tue.nl (E. Hensen).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21972050);Program for Academic Frontier Youth Team in Huazhong University of Science and Technology(2018QYTD03)

摘要:

生物乙醇高值化利用的一个重要方向是以乙醇选择氧化制乙醛来替代传统乙烯瓦克氧化工艺. 乙醇氧化脱氢制乙醛是放热反应, 在较低温度下反应可有效抑制催化剂烧结或积碳失活, 但选择性调控仍具挑战性. 在已报道的众多催化剂中, 负载型纳米Au表现出较高的乙醛选择性, 其中金属-载体之间的Au-Cu协同催化可获得90%以上的乙醛产率, 但是目前最有效的Au/MgCuCr2O4催化剂仍面临使用有害金属、低温(< 250 oC)催化效率不高的局限. 合理设计具有特定结构和功能的催化新材料是提升催化剂性能的关键. 鉴于LaMnO3钙钛矿具有良好的催化氧化性能、热稳定性和环境友好性, 并且其氧化还原性质可通过掺杂过渡金属来调变.

本文尝试将Cu掺杂的LaMnO3与纳米Au结合, 设计制备出不同Cu和Au含量的Au/LaMnCuO3催化剂并用于乙醇氧化脱氢制乙醛. 实验研究发现, 在具有不同Cu含量(Cu/Mn = 0/1, 1/3, 1/1, 1/0)及相同Au负载量(1 wt%)的催化剂中, 少量Cu掺杂的Au/LaMn0.75Cu0.25O3对乙醇氧化脱氢表现出很强的Au-Mn-Cu协同作用, 并具有最高的催化效率, 在225 oC获得97%的乙醇转化率和98%的乙醛选择性, 并维持至少80 h性能不降低. 该催化剂的低温(100-225 oC)催化性能明显高于其它参照催化剂, 不仅具有最低的表观活化能(40.1 kJ mol-1), 还能通过优化Au负载量来提高乙醛时空收率至1385 g gAu-1 h-1. X射线光电子能谱结果表明, Au/LaMn0.75Cu0.25O3表面的Cu+和Mn2+物种在反应后均明显增加, 并且没有Cu0生成; 而Cu含量更高的Au/LaMn0.5Cu0.5O3和Au/La2CuO4催化剂在反应后生成了大量Cu0; 程序升温还原结果表明LaMn0.75Cu0.25O3的Mn和Cu物种具有较低的可还原性和较高的稳定性. 结合反应和表征结果, 可将Au/LaMn0.75Cu0.25O3的最佳催化性能归因于其纳米Au颗粒附近存在数量较多并且稳定的Cu+-O-Mn2+位点, 从而有利于协同活化O2和乙醇分子.

密度泛函理论研究表明, 模型催化剂Au/LaMnO3, Au/LaMnCuO3和Au/La2CuO4上进行的乙醇氧化脱氢反应均遵循MvK机理, 前半催化循环(SI)是涉及乙醇与晶格氧反应的前6步基元反应, 而后半催化循环(SII)是吸附氧与另一乙醇分子反应的后7步基元反应. 乙醇吸附能、O2吸附能和氧空位(OV)形成能均是按照Au/LaMnO3 > Au/LaMnCuO3 > Au/La2CuO4的顺序依次降低. Au/LaMnO3和Au/LaMnCuO3上反应的速控步骤是SII中H2O的形成, 活化能分别为1.67和0.72 eV; 而Au/La2CuO4上反应的速控步骤是SI中吸附乙氧基的α-C-H键断裂, 活化能为0.91 eV. 微观动力学模拟结果与实验趋势一致, 反应速率顺序为: Au/LaMnO3 < Au/La2CuO4 < Au/LaMnCuO3. 预测330 °C以下Au/LaMnO3和Au/La2CuO4的速控步骤分别只是SII中H2O的形成和SIα-C-H键的断裂, 而Au/LaMnCuO3在180 °C以上除了SII中形成H2O是主要的速控步骤外, SI中的醇O-H和α-C-H键的断裂及SII中的醇O-H断裂也开始影响反应速率. 晶体轨道哈密顿布居分析表明, Au/LaMnCuO3中Cu-O键弱于Au/LaMnO3中Mn-O键, Cu取代Mn后减弱了与表面O原子的相互作用, 从而降低了形成H2O的活化能. 基于Mn和Cu的电子结构分析进一步证明, Au/LaMnCuO3表面相邻的Cu2+-O-Mn3+位点在移除一个晶格氧后会形成Cu+-OV-Mn2+位点, O2在该位点吸附并活化为O22-, 但Cu掺入过量将会形成不稳定的Cu2+-O-Cu2+位点, 这与实验观察到的高Cu含量催化剂易形成Cu0相一致. 因此, 强Au-Mn-Cu协同作用的本质是催化剂中纳米Au附近大量存在的是Cu2+-O-Mn3+/Cu+-OV-Mn2+而不是Cu2+-O-Cu2+位点, 这对Cu掺入量有较高的要求. 本文对新型多金属中心协同催化剂的设计和理解乙醇氧化脱氢协同催化机制提供了新思路.

关键词: 乙醇氧化, 乙醛, 金催化剂, LaMnO3钙钛矿, 铜掺杂

Abstract:

Gold nanoparticles (AuNPs) supported on the Cu-doped LaMnO3 perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde (AC). The Au/LaMnCuO3 catalysts achieve AC yields exceeding 90% and a space-time yield of 715 gAC gAu-1 h-1 at 225 °C, outperforming reported catalysts. The outstanding performance is attributed to adjacent Cu+ and Mn2+ ions in the perovskite surface, which, together with nearby AuNPs, contribute to the high activity and stability. The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite. Doping too much Cu into the perovskite leads to metallic Cu, suppressing catalyst performance. Density functional theory (reaction energetics, electronic structure analysis) and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs. The reaction involves two H abstraction steps: (1) O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and (2) α-C-H cleavage by AuNPs, yielding AC and adsorbed water. Molecular O2 adsorbs in the oxygen vacancy (OV) formed by water removal, generating a peroxide anion (O22-) as the activated oxygen species. In the second part of the catalytic cycle, the basic O22- species abstracts the H atom from another ethanol molecule, followed by α-C-H cleavage by AuNPs, AC production, and water removal. Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO3 and Au/LaMnCuO3 models. Moderate Cu doping enhances the essential Cu+-OV-Mn2+ sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond. In contrast, excessive Cu doping creates unstable Cu2+-O-Cu2+ sites and shifts the barrier to the α-C-H cleavage.

Key words: Ethanol oxidation, Acetaldehyde, Gold catalyst, LaMnO3 perovskite, Copper doping