催化学报 ›› 2026, Vol. 80: 316-329.DOI: 10.1016/S1872-2067(25)64871-6

• 论文 • 上一篇    下一篇

晶界工程诱导二氧化铈电子重分布催化二氧化碳制碳酸二甲酯

侯国强, 许狄(), 范海峰, 李洋洋, 黄思懿, 定明月()   

  1. 武汉大学动力与机械工程学院, 技术科学研究院, 湖北武汉 430072
  • 收稿日期:2025-06-24 接受日期:2025-09-05 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 许狄,定明月
  • 基金资助:
    国家重点研发计划(2022YFA1504700);国家自然科学基金(22308266);国家自然科学基金(U21A20317);湖北省创新团队(2022CFA017);中国博士后科学基金(2021M702521);湖北省博士后创新研究岗位

Grain boundary engineering of CeO2 induced electron redistribution for dimethyl carbonate synthesis from CO2

Guoqiang Hou, Di Xu(), Haifeng Fan, Yangyang Li, Siyi Huang, Mingyue Ding()   

  1. The Institute of Technological Sciences, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2025-06-24 Accepted:2025-09-05 Online:2026-01-18 Published:2026-01-05
  • Contact: Di Xu, Mingyue Ding
  • Supported by:
    China National Key Research and Development Plan Project(2022YFA1504700);National Natural Science Foundation of China(22308266);National Natural Science Foundation of China(U21A20317);Innovative Groups in Hubei Province(2022CFA017);China Postdoctoral Science Foundation(2021M702521);Postdoctoral Innovative Research Post in Hubei Province

摘要:

工业化进程加速了能源消费, 导致大气中CO2等温室气体浓度持续升高. 2022年, 由不可再生能源的使用排放的CO2达368亿吨, 远超自然固碳速率, 使得减排成为一项紧迫的环境问题. 因此, CO2高效转化为高附加值化学品至关重要. 其中, 碳酸二甲酯(DMC)因其含有羰基、甲氧基等多种官能团, 可作为光气等剧毒物质的绿色替代品, 已广泛应用于医药、石油添加剂及电解质领域. 现有工业制备方法存在显著局限:传统光气法虽产率较高, 但存在剧毒物质使用风险; 酯交换法则受限于催化剂成本或反应安全性; 氧化羰基化法虽具有理论原子经济性优势, 但需苛刻反应条件且产物纯度受限. 相比之下, 以CO2和甲醇直接合成DMC具有环境友好、原子经济性高及安全等优势, 能利用温室气体和煤化工下游产品, 学术与应用潜力巨大. 然而, 惰性的CO2分子难活化, 如何促进关键中间体*CH3OCOO的生成和转化以提升DMC产率, 是该反应的核心挑战.

本研究创新性地提出一种硼酸辅助再结晶策略, 通过添加4%硼酸成功构筑了富含晶界(GBs)缺陷的CeO2空心纳米球催化剂(4%BCeO2-GBs). 通过系统的结构表征与机理研究, 发现晶界缺陷的引入诱导了CeO2电子结构的显著重构: 一方面, 电子从体相Ce离子向晶界界面迁移, 形成体相缺电子区与界面局域富电子区的协同体系; 另一方面, 晶界作为体相缺陷促进了单电子物种的生成. 这种独特的电子分布通过双路径提升催化性能: 在体相区域, Ce离子的电子缺失削弱了*CH3O物种的吸附强度, 从而显著加速*CH3O与CO2耦合形成关键中间体CH3OCOO的速率; 在界面区域, 富电子环境通过单电子氧物种增强CO2的化学吸附, 进而有效降低了CH3OCOO的解离能垒, 推动其高效转化为DMC. 催化性能测试结果表明, 在无脱水剂条件下, 4%BCeO2-GBs的DMC产率达19.8 mmol/g, 具有显著的性能优势. 当引入脱水剂2-氰基吡啶后, DMC产率飙升至264.2 mmol/g(甲醇转化率7.12%), 较商业CeO2提升了32倍.

综上, 本研究不仅首次阐明晶界缺陷通过电子重分布调控CH3OCOO中间体行为的原子级机制, 更开创了“晶界工程”设计高效CO2固定催化剂的设计思路.

关键词: 碳酸二甲酯合成, 二氧化铈催化剂, 晶界工程, 电子重分布, 反应中间体

Abstract:

Direct synthesis of dimethyl carbonate (DMC) from CO2 is critical for achieving carbon neutrality, yet the sluggish formation and conversion of the key *CH₃OCOO intermediate-due to the difficulty of C-O coupling-limit high DMC yields. Herein, we developed a boric acid-assisted recrystallization strategy to fabricate grain-boundary-rich CeO2 hollow nanospheres, which serve as an efficient catalyst for CO2 to DMC synthesis. The introduction of grain-boundary (GBs) induced the electron redistribution, which led a decrease in the electron density of bulk Ce ions and created a localized electron-rich region at homogeneous interface. This unique electronic landscape promoted reactive methoxy formation and stronger CO2 adsorption, thereby enabling more efficient coupling of *CH3O and *CO2 to form the *CH3OCOO. Concurrently, the enhanced CO2 adsorption facilitated the dissociation of *CH3OCOO and subsequent DMC formation. As a result, the 4%BCeO2-GBs achieved an advantageous DMC yield of 19.8 mmol/g. In the assistance of dehydrating agent, the catalyst delivered a remarkable 264.2 mmol/g DMC yield and 7.12% methanol conversion, which was 32 times higher than commercial CeO2. This study elucidated the intrinsic mechanisms governing *CH3OCOO intermediate behavior and offers valuable guidance for CO2 converting into high-value organic chemicals.

Key words: Dimethyl carbonate synthesis, CeO2 catalyst, Grain boundary engineering, Electron redistribution, Reaction intermediates