催化学报 ›› 2026, Vol. 80: 330-346.DOI: 10.1016/S1872-2067(25)64821-2
收稿日期:2025-06-05
接受日期:2025-08-05
出版日期:2026-01-18
发布日期:2026-01-05
作者简介:第一联系人:1共同第一作者
Wonjoong Yoona,1, Malayil Gopalan Sibib,1, Jaehoon Kima,b,c,*(
)
Received:2025-06-05
Accepted:2025-08-05
Online:2026-01-18
Published:2026-01-05
Contact:
Jaehoon Kim
About author:First author contact:1These authors contributed equally.
摘要:
通过CO2加氢直接合成芳烃化合物面临反应条件苛刻、芳烃收率低及催化剂失活等挑战. 本研究提出一种三床层(TB)催化剂体系(Na-FeAlOₓ/Zn-HZSM-5@SiO2), 通过优化多种功能位点的空间排列, 显著提升了芳烃生成的稳定性和效率. 在CO2转化率50.3%时, 烃池中芳烃含量达73.6%, BTEX(苯、甲苯、二甲苯、乙苯)选择性为67.8%, CO选择性仅为13.9%, 且活性在125 h后仅轻微下降. 与物理混合(MM)和颗粒混合(GM)构型相比, TB构型通过抑制钠中毒和维持沸石骨架完整性, 展现出更优的催化稳定性. 研究结果表明, TB构型中沸石结晶度在370 °C、3.5 MPa下保持65%, 而MM构型则低于12%. 机理研究表明, 铁与沸石的邻近效应调控了碳链生长路径, 减少了积碳生成, 并通过空间隔离避免了活性位点失活. 在优化的370 °C、3.5 MPa、空速4000 mL·g-¹·h-¹条件下, TB构型实现了芳烃选择性的最大化(44.1%)和长期稳定性(250 h后仍保持30.4%). 本文为CO2高效转化制高附加值芳烃提供了新策略, 证实了多功能催化剂空间分离设计在抑制失活和提升反应选择性中的关键作用.
. 三床层Na-FeAlOₓ/Zn-HZSM-5@SiO2催化CO2直接加氢稳定生成芳烃[J]. 催化学报, 2026, 80: 330-346.
Wonjoong Yoon, Malayil Gopalan Sibi, Jaehoon Kim. A triple-bed Na-FeAlOx/Zn-HZSM-5@SiO2 catalyst for the stable and direct generation of aromatics via CO2 hydrogenation[J]. Chinese Journal of Catalysis, 2026, 80: 330-346.
| Catalyst | BET surface area a (m2 g−1) | Total pore volume b (cm3 g-1) | Micropore volume c (cm3 g−1) | Mesopore volume c (cm3 g−1) | Average pore diameter (nm) |
|---|---|---|---|---|---|
| HZSM-5(12.5) | 402.2 | 0.210 | 0.180 | 0.031 | 2.0 |
| Zn-HZSM-5(12.5) | 318.8 | 0.154 | 0.141 | 0.013 | 1.9 |
| Reduced ZnZS | 367.9 | 0.206 | 0.165 | 0.041 | 2.2 |
| Spent TBM (250 h) | 221.2 | 0.168 | 0.159 | 0.009 | 3.1 |
| Spent TBB (250 h) | 281.3 | 0.181 | 0.170 | 0.011 | 2.6 |
Table 1 Textural properties of the zeolite supports and composite catalysts determined from their N2 adsorption-desorption isotherms.
| Catalyst | BET surface area a (m2 g−1) | Total pore volume b (cm3 g-1) | Micropore volume c (cm3 g−1) | Mesopore volume c (cm3 g−1) | Average pore diameter (nm) |
|---|---|---|---|---|---|
| HZSM-5(12.5) | 402.2 | 0.210 | 0.180 | 0.031 | 2.0 |
| Zn-HZSM-5(12.5) | 318.8 | 0.154 | 0.141 | 0.013 | 1.9 |
| Reduced ZnZS | 367.9 | 0.206 | 0.165 | 0.041 | 2.2 |
| Spent TBM (250 h) | 221.2 | 0.168 | 0.159 | 0.009 | 3.1 |
| Spent TBB (250 h) | 281.3 | 0.181 | 0.170 | 0.011 | 2.6 |
Fig. 1. (a) Hydrogenation of CO2 and the resulting hydrocarbon selectivity. (b) Detailed liquid hydrocarbon distribution over the 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (MM, Na11-FA?ZnZS), granular-mixed (GM, Na11-FA|ZnZS), dual-bed (DB, Na11-FA||ZnZS ), and triple-bed (TB, Na11-FA|||ZnZS) configurations. (c) Schematic representation of the various catalyst configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 flow rate = 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 25 h. Note: The visual difference between the middle and bottom ZnZS layers in the TB configuration is due to limitations in the visualization setup using a glass TPD cell. Both layers contain identical ZnZS catalyst (0.5?g each) and were uniformly loaded in the actual stainless-steel reactor.
Fig. 2. Hydrogenation of CO2, hydrocarbon selectivity, and stability over the 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) (a,b), granular-mixed (Na11-FA|ZnZS) (c,d), dual-bed (Na11-FA||ZnZS) (e,f), and triple-bed (Na11-FA|||ZnZS) (g,h) configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 flow rate = 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, and 4000 mL g?1 h?1. Non-Aro C5+ = non-aromatic C5+ compounds. Aro = aromatic compounds.
Fig. 3. (a) XRD patterns of the reduced and spent 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS), granular-mixed (Na11-FA|ZnZS), dual-bed (Na11-FA||ZnZS), and triple-bed (Na11-FA|||ZnZS) configurations. Layer-position abbreviations used herein: DBT/DBB denote the top/bottom layers of the dual-bed (DB) configuration, and TBT/TBM/TBB denote the top/middle/bottom layers of the triple-bed (TB) configuration. Enlarged XRD patterns in the metal oxide region (b), carbide region (c), and zeolitic region (d,e). Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 4. High-resolution XPS spectra in the C 1s region (a), Fe 2p region (b), and Na 1s region (c) for the spent 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS), granular-mixed (Na11-FA|ZnZS), dual-bed (Na11-FA||ZnZS), and triple-bed (Na11-FA|||ZnZS) configurations. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 5. NH3-TPD (a) and pyridine-DRIFT profiles (b) of the reduced 11%Na-FeAlOx (Na11-FA), Zn-HZSM-5(12.5)@SiO2 (ZnZS), and 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) and granular-mixed (Na11-FA|ZnZS) configurations, along with those of the spent Na11-FA/ZnZS catalyst in the bottom bed of dual-bed (Na11-FA||ZnZS) configuration, and in the middle and bottom beds of the triple-bed (Na11-FA|||ZnZS) configuration. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 6. HR-TEM and HAADF images of the spent Na11-FA (250 h) (a), Na11-FA?ZnZS (150 h) (b), Na11-FA|ZnZS (150 h) (c), top bed Na11-FA||ZnZS (150 h) (d), and top bed Na11-FA|||ZnZS (250 h) (e) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 7. HR-TEM and HAADF images of the spent bottom beds of the Na11-FA||ZnZS (150 h) (a) and Na11-FA|||ZnZS (250 h) (b) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
Fig. 8. TGA profiles of the spent 11%Na-FeAlOx (Na11-FA) (a) and 11%Na-FeAlOx/Zn-HZSM-5(12.5)@SiO2 (Na11-FA/ZnZS) catalysts in the mortar-mixed (Na11-FA?ZnZS) (b), granular-mixed (Na11-FA|ZnZS) (c), top bed of the dual-bed (Na11-FA||ZnZS) (d), bottom bed of the Na11-FA||ZnZS (e), top bed of the triple-bed (Na11-FA|||ZnZS) (f), middle bed of the Na11-FA|||ZnZS (g), and bottom bed configurations for the Na11-FA|||ZnZS (h) catalysts. Pretreatment conditions: 450 °C, 3.5 MPa, H2 50 mL min?1, 10 h. Reaction conditions: 370 °C, 3.5 MPa, H2/CO2 = 3:1, 4000 mL g?1 h?1, 150-250 h.
|
| [1] | 庹杰, 盛振腾, 龚贤晨, 杨琪, 吴鹏, 徐浩. ZnCeZrOx/MCM-22择形催化二氧化碳加氢耦合甲苯甲基化反应[J]. 催化学报, 2025, 73(6): 174-185. |
| [2] | 吴剑峰, 梁丽烨, 车政, 苗宇婷, 丑凌军. 双金属氧化物催化CO2加氢制备甲醇: 最新进展和挑战[J]. 催化学报, 2025, 73(6): 62-78. |
| [3] | 胡晓春, 陶龙刚, 雷坤, 孙志强, 谭明务. 揭示TiO2相效应对Pt单原子催化剂高效CO2转化的影响[J]. 催化学报, 2025, 73(6): 186-195. |
| [4] | 凌云, 苏慧, 周如玉, 封清运, 郑轩, 汤儆, 李奕, 张茂升, 汪庆祥, 李剑锋. PtCuSnCo合金催化剂中邻近效应精确调控NO3−吸附与脱氧实现合成氨100%法拉第效率[J]. 催化学报, 2025, 73(6): 347-357. |
| [5] | 梁昊, 张书南, 张若楠, 周浩志, 夏林, 孙予罕, 王慧. FeTi强相互作用促进CO2高效加氢制低碳烯烃[J]. 催化学报, 2025, 71(4): 146-157. |
| [6] | 刘佳旭, 陈佳鑫, 张晓彦, 范代娣, 白云鹏. 液-液相分离介导的双酶凝聚体增强辅因子循环效率与反应速率[J]. 催化学报, 2025, 69(2): 135-148. |
| [7] | 李兴娟, 郭昱昊, 管勤辉, 李晓, 张璐璐, 冉维广, 李娜, 颜廷江. 高密度Au-OV协同位点促进串联光催化CO2加氢制CH3OH[J]. 催化学报, 2025, 69(2): 303-314. |
| [8] | 王男, 吴一墨, 韩晶峰, 张亚楠, 王莉, 于洋, 张嘉兴, 熊昊, 陈晓, 周易达, 王韩丽新, 徐兆超, 徐舒涛, 郭新闻, 魏飞, 魏迎旭, 刘中民. ZSM-5催化甲醇制烯烃反应积碳贯穿孔道交联生长机理: 从分子结构、时空动态到催化剂失活[J]. 催化学报, 2025, 78(11): 215-228. |
| [9] | Anton L. Maximov, Mikhail P. Egorov. 鸡尾酒型催化: 催化活性中心的动态本质与统一理论框架[J]. 催化学报, 2025, 78(11): 7-24. |
| [10] | Tristan James Sim, Yun Ha Song, Jaehee Shim, Gihoon Lee, 李良清, Young Soo Ko, Jungkyu Choi. 脱除MWW沸石骨架铝实现钼浸渍催化剂性能突破:积炭成因及其对甲烷脱氢芳构化影响的系统阐释[J]. 催化学报, 2025, 77(10): 123-143. |
| [11] | 陈阳, 周荻雯, 常永丽, 林虹巧, 许运钊, 张勇, 袁丁, 吴立志, 汤禹, 代成义, 李新刚, 魏勤洪, 谭理. 用于CO2高效加氢制甲醇Cu-Zn-Ce催化剂的协同界面工程[J]. 催化学报, 2025, 77(10): 171-183. |
| [12] | 钟百灵, 胡俊蝶, 杨晓刚, 舒银颖, 蔡亚辉, 李长明, 曲家福. 金属有机框架中限域金属物种用于CO2加氢: 合成方法、催化机理及未来展望[J]. 催化学报, 2025, 68(1): 177-203. |
| [13] | 张淼, 张莉民, 王明瑞, 张光辉, 宋春山, 郭新闻. 石墨烯层包覆铁钴合金的电子相互作用促进CO2高效加氢制低碳烯烃[J]. 催化学报, 2025, 68(1): 366-375. |
| [14] | 王畅, 颜婷婷, 戴卫理. Y/Beta催化剂上丙酮制异丁烯反应的失活机理[J]. 催化学报, 2024, 64(9): 133-142. |
| [15] | 苟王燕, 王译晨, 张铭凯, 谈晓荷, 马媛媛, 瞿永泉. 设计稳定的钌基析氢和析氧反应催化剂的基本原理[J]. 催化学报, 2024, 60(5): 68-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||