催化学报 ›› 2026, Vol. 80: 330-346.DOI: 10.1016/S1872-2067(25)64821-2

• 论文 • 上一篇    下一篇

三床层Na-FeAlO/Zn-HZSM-5@SiO2催化CO2直接加氢稳定生成芳烃

  

  1. a成均馆大学化学工程学院, 水原, 韩国
    b成均馆大学机械工程学院, 水原, 韩国
    c成均馆大学纳米技术高级研究院(SAINT), 水原市, 韩国
  • 收稿日期:2025-06-05 接受日期:2025-08-05 出版日期:2026-01-18 发布日期:2026-01-05
  • 作者简介:第一联系人:1共同第一作者

A triple-bed Na-FeAlOx/Zn-HZSM-5@SiO2 catalyst for the stable and direct generation of aromatics via CO2 hydrogenation

Wonjoong Yoona,1, Malayil Gopalan Sibib,1, Jaehoon Kima,b,c,*()   

  1. aSchool of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
    bSchool of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
    cSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do 16419, Republic of Korea
  • Received:2025-06-05 Accepted:2025-08-05 Online:2026-01-18 Published:2026-01-05
  • Contact: Jaehoon Kim
  • About author:First author contact:1These authors contributed equally.

摘要:

通过CO2加氢直接合成芳烃化合物面临反应条件苛刻、芳烃收率低及催化剂失活等挑战. 本研究提出一种三床层(TB)催化剂体系(Na-FeAlO/Zn-HZSM-5@SiO2), 通过优化多种功能位点的空间排列, 显著提升了芳烃生成的稳定性和效率. 在CO2转化率50.3%时, 烃池中芳烃含量达73.6%, BTEX(苯、甲苯、二甲苯、乙苯)选择性为67.8%, CO选择性仅为13.9%, 且活性在125 h后仅轻微下降. 与物理混合(MM)和颗粒混合(GM)构型相比, TB构型通过抑制钠中毒和维持沸石骨架完整性, 展现出更优的催化稳定性. 研究结果表明, TB构型中沸石结晶度在370 °C、3.5 MPa下保持65%, 而MM构型则低于12%. 机理研究表明, 铁与沸石的邻近效应调控了碳链生长路径, 减少了积碳生成, 并通过空间隔离避免了活性位点失活. 在优化的370 °C、3.5 MPa、空速4000 mL·g-¹·h-¹条件下, TB构型实现了芳烃选择性的最大化(44.1%)和长期稳定性(250 h后仍保持30.4%). 本文为CO2高效转化制高附加值芳烃提供了新策略, 证实了多功能催化剂空间分离设计在抑制失活和提升反应选择性中的关键作用.

关键词: CO2加氢, 芳烃化合物, 邻近效应, 失活, 三床层催化剂

Abstract:

The direct synthesis of aromatic compounds from the reduction of CO2 remains challenging due to harsh operating conditions, low aromatic yields, and catalyst deactivation. A comprehensive understanding of the distance-induced optimal activity is therefore essential for achieving a rational spatial arrangement of multifunctional active sites for the hydrogenation of CO2 to generate aromatic compounds. In this study, a triple-bed catalyst system is reported, which directly converts CO2 into aromatic compounds with low CO emission levels. At a CO2 conversion of 50.3%, the hydrocarbon pool contained 73.6% aromatic compounds while maintaining a moderately low CO selectivity of 13.9%. The BTEX (benzene, toluene, xylene, and ethylbenzene) selectivity within the aromatic products reached 67.8% and remained stable over 125 h, with only a slight decline being observed beyond this time. Compared to the mortar- and granular-mixed configurations, the triple-bed system exhibited a superior catalytic stability, likely due to the suppression of Na-induced poisoning on the zeolite acid sites. Additionally, the close contact between Fe and the zeolite structure altered the Fe phase evolution process for the chain extension reaction, while also significantly degrading the structural integrity of the zeolite. Under 370 °C and 3.5 MPa conditions, the zeolite crystallinity in the mortar-mixed 11% Na-promoted FeAlOx/Zn-HZSM-5@SiO2 catalyst dropped below 12%, whereas the double- and triple-bed configurations retained crystallinities of ~65%, which likely contributed to the improved catalyst longevity. These results indicate that the triple-bed configuration provides a promising route for enhancing the stability and efficiency of the direct hydrogenation reaction to generate aromatic compounds from CO2.

Key words: CO2 hydrogenation, Aromatic compounds, Proximity, Deactivation, Triple-bed catalyst