催化学报 ›› 2025, Vol. 73: 347-357.DOI: 10.1016/S1872-2067(25)64705-X

• 论文 • 上一篇    下一篇

PtCuSnCo合金催化剂中邻近效应精确调控NO3吸附与脱氧实现合成氨100%法拉第效率

凌云a,c,1(), 苏慧a,1, 周如玉d,1, 封清运a, 郑轩a, 汤儆b, 李奕b, 张茂升a, 汪庆祥a, 李剑锋a,d()   

  1. a闽南师范大学化学化工与环境学院, 现代分离分析科学与技术福建省重点实验室, 污染监测与控制福建省高校重点实验室, 福建漳州 363000
    b福州大学化学学院, 食品安全分析与生物分析教育部重点实验室, 福建福州 350116
    c南开大学先进能源材料化学教育部重点实验室, 天津 300071
    d厦门大学能源学院, 化学化工学院, 表界面化学全国重点实验室, 能源材料化学协同创新中心, 材料学院, 福建厦门 361005
  • 收稿日期:2025-02-23 接受日期:2025-04-30 出版日期:2025-06-18 发布日期:2025-06-12
  • 通讯作者: *电子信箱: lingyun@mnnu.edu.cn (凌云),Li@xmu.edu.cn (李剑锋).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(21872034);国家自然科学基金(22021001);国家自然科学基金(92472203);福建省自然科学基金(2019J01746);福州大学福建省新型电化学储能材料重点实验室开放课题(2021CN01);漳州市自然科学基金(ZZ2024J16)

Neighboring effect in PtCuSnCo alloy catalysts for precisely regulating nitrate adsorption and deoxidation to achieve 100% faradaic efficiency in ammonia synthesis

Yun Linga,c,1(), Hui Sua,1, Ru-Yu Zhoud,1, Qingyun Fenga, Xuan Zhenga, Jing Tangb, Yi Lib, Maosheng Zhanga, Qingxiang Wanga, Jian-Feng Lia,d()   

  1. aFujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, Fujian, China
    bKey Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
    cKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
    dCollege of Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Material, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2025-02-23 Accepted:2025-04-30 Online:2025-06-18 Published:2025-06-12
  • Contact: *E-mail: lingyun@mnnu.edu.cn (Y. Ling),Li@xmu.edu.cn (J-F. Li).
  • About author:1These authors contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(21872034);National Natural Science Foundation of China(22021001);National Natural Science Foundation of China(92472203);Natural Science Foundation of Fujian Province(2019J01746);Open Fund of Fujian Key Laboratory of Electrochemcial Energy Storage Materials, Fuzhou University(2021CN01);Natural Science Foundation of Zhangzhou City(ZZ2024J16)

摘要:

氨(NH3)是农业的基石, 也是化工和制药等多种行业的重要原料, 同时也是潜在的零碳能源载体, 其可持续合成备受关注. 电化学还原硝酸盐(NO3)合成NH3(NO3RR)是一种环境可持续的NH3生产策略, 同时可以解决水污染问题. 然而, 这种多步反应的内在复杂性严重限制了NO3RR的选择性和效率. Cu基催化剂因具有较高的交换电流密度、NO3RR产率和低成本, 已成为绿色合成NH3技术研究中应用最广泛的催化剂, 但由于对NO3的吸附强度不足, Cu基电催化剂往往会产生亚硝酸盐(NO2)的积累. 这种限制通常会导致催化剂快速失活, 阻碍氢化途径, 降低整体效率. 因此, 设计新型Cu基催化剂以精准调控NO3吸附与脱氧过程, 实现高效稳定的NH3合成, 对推动绿色化学与可持续发展具有重要意义.

本文通过一步绿色化学还原法合成了元素均匀分布的PtCuSnCo四元合金纳米颗粒, 创新性地利用SnCo与PtCu活性位点的“邻近效应”, 协同优化NO3吸附与脱氧过程. 实验表明, 在模拟实际废水NO3浓度下, 该催化剂于−0.9 V vs. RHE下展现出接近100%的法拉第效率(99.69 ± 0.39%)和95.6 ± 2.9%的NH3选择性, NH3产率达1.82 ± 0.07 mg h−1 mgcat−1. 原位拉曼光谱和密度泛函理论计算表明, SnCo位点通过强吸附稳定NO3及中间体, 而邻近的PtCu位点加速脱氧和加氢步骤, 有效抑制NO2积累, 推动反应沿NO3→*NO3→*NO2→*NO→*N→*NH→*NH2→*NH3→NH3(g)的低能垒路径进行. 为进一步探究低能垒的起源, 计算了PtCuSnCo合金及其各金属元素的投影态密度和d带中心. 合金中Pt, Cu, Sn, Co的d带中心分别为−2.16, −2.34, 3.38和−1.03 eV, 其中Co的d带中心最接近费米能级. 这种接近性表明Co原子具有强吸附能力, 解释了NO3优先吸附于CoSn位点的现象. 此外, PtCuSnCo合金的d带中心为−1.62 eV, 介于单质Sn (0.55 eV), Co (−1.14 eV)与Pt (−1.89 eV), Cu (−2.28 eV)之间. 这一适中的d带中心反映了四金属间的协同电子相互作用, 使合金能够优化反应中间体的吸附与脱附过程. 这种调控作用平滑了NO3RR各步骤的能量分布, 从而显著降低决速步的能垒. 对比实验表明, 仅含PtCu或SnCo的催化剂性能显著下降, 凸显了四元合金中空间邻近效应的关键作用. 此外, 同位素标记实验(15NO3)和长期稳定性测试(56 h)进一步验证了NH3产物来源的可靠性及催化剂的耐久性.

综上, 四元合金中SnCo和PtCu位点之间的协同空间邻近效应有效地稳定了NO3脱氧, 抑制了NO2的形成. 该串联结构实现了吸附强度和脱氧动力学之间的精准平衡, 实现了高选择性和高效的NO3RR. 研究成果强调了多金属催化剂在克服NO3RR持续挑战方面不可或缺的作用, 为高效NH3合成和环境修复提供了新的策略.

关键词: 邻近效应, 四元合金, 脱氧, 合成氨, 原位拉曼光谱

Abstract:

The electrochemical reduction of nitrate (NO3) to ammonia (NH3) (NO3RR) represents an environmentally sustainable strategy for NH3 production while concurrently addressing water pollution challenges. Nevertheless, the intrinsic complexity of this multi-step reaction severely constrains both the selectivity and efficiency of NO3RR. Copper-based electrocatalysts have been extensively investigated for NO3RR but often suffer from nitrite (NO2) accumulation, which stems from insufficient NO3 adsorption strength. This limitation often leads to rapid catalyst deactivation, hindered hydrogenation pathways, and reduced overall efficiency. Herein, we report a one-step green chemical reduction method to synthesize PtCuSnCo quarternary alloy nanoparticles with homogeneously distributed elements. Under practical NO3 concentrations, the optimized catalyst exhibited an impressive Faradaic efficiency approaching 100% and an outstanding selectivity of 95.6 ± 2.9%. Mechanistic insights uncovered that SnCo sites robustly facilitated NO3 adsorption, complemented by the proficiency of PtCu sites in NO3 reduction. The synergistic spatial neighborhood effect between SnCo and PtCu sites efficiently stabilizes NO3 deoxygenation and suppresses NO2 accumulation. This tandem architecture achieves a finely tuned balance between adsorption strength and deoxygenation kinetics, enabling highly selective and efficient NO3RR. Our findings emphasize the indispensable role of engineered multi-metallic catalysts in overcoming persistent challenges of NO3RR, paving the way for advanced NH3 synthesis and environmental remediation.

Key words: Neighboring effect, Quaternary alloy, Deoxidation, Ammonia synthesis, In situ Raman spectroscopy