催化学报 ›› 2026, Vol. 80: 347-357.DOI: 10.1016/S1872-2067(25)64829-7

• 论文 • 上一篇    

亚纳米氧化钼稳定铂纳米催化剂高效催化甲基环己烷制氢

周生辉a,b, 王铮a, 吴超d, 席识博d, 徐蓉a,b,*()   

  1. a南洋理工大学化学化学工程与生物技术学院, 新加坡
    b新加坡国家研究基金会科研卓越与技术企业园区-剑桥碳减排化学技术中心, 新加坡
    c剑桥大学化学工程与生物技术系, 剑桥, 英国
    d新加坡科学技术研究局化学、能源与环境可持续性研究所, 新加坡
    e北卡罗来纳州立大学工程学院化学与生物分子工程系, 北卡罗来纳州, 美国
  • 收稿日期:2025-06-03 接受日期:2025-07-24 出版日期:2026-01-18 发布日期:2026-01-05
  • 通讯作者: 徐蓉

Subnanometer molybdenum oxide-stabilized platinum nanocatalysts enable efficient hydrogen production from methylcyclohexane

Shenghui Zhoua,b, Zheng Wanga, Voon Huey Lima, Chi Cheng Chonga, Hossein Akhoundzadeha, Chao Wud, Mohammadreza Kosarie, Shibo Xid, Markus Krafta,b,c, Rong Xua,b,*()   

  1. aSchool of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
    bCambridge Centre for Carbon Reduction in Chemical Technologies, Campus for Research Excellence and Technological Enterprise, National Research Foundation, CREATE Tower, 1 Create Way, Singapore 138602, Singapore
    cDepartment of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
    dInstitute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
    eChemical and Biomolecular Engineering Department, College of Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, USA
  • Received:2025-06-03 Accepted:2025-07-24 Online:2026-01-18 Published:2026-01-05
  • Contact: Rong Xu

摘要:

氢能因其零碳排放、可清洁转化、高能量密度和可再生性, 被视为最具潜力的替代能源之一. 然而, 氢气的储存与运输难题制约了其大规模应用. 氢气的储运方式主要包括高压气态储罐、低温液化储氢、金属氢化物储氢、多孔材料储氢以及液态有机储氢载体(LOHCs). LOHCs通过不饱和化合物加氢储氢、饱和化合物脱氢释氢, 具有储氢容量高、与现有石油基础设施兼容性好以及长距离运输安全可靠等优势, 近年来备受关注. 甲基环己烷是最具前景的LOHCs之一, 其脱氢生成甲苯的高效转化仍面临活性、选择性与稳定性难以兼顾的挑战. 铂基催化剂因可高效断裂C‒H键而表现出优异活性, 但在高温条件下易发生颗粒烧结与积碳失活, 亟需开发更稳定高效的催化体系.

本文报道了一种创新的催化剂合成策略, 采用简单且易于工业化的两步浸渍法成功制备了高度分散且稳定的双金属Pt-MoOx/γ-Al2O3催化剂. 相对于单金属Pt/γ-Al2O3, 通过引入亚纳米级的MoOx组分, 有效调控了Pt纳米颗粒的大小和电子特性,进而显著提升了催化性能与稳定性. 实验结果表明, 在340 °C的脱氢温度下, 优化后的Pt-MoOx/γ-Al2O3催化剂表现出优异的催化活性, 实现了高达99.5%的甲基环己烷转化率及99.8%的甲苯选择性和470.5 mmol·gPt‒1·min‒1的氢气生成速率. 进一步的稳定性测试表明, 该催化剂在重量空速为11.7 h‒1的条件下, 经过长达140 h的连续脱氢反应后, 催化活性几乎未见明显衰减, 表现出优异的长期稳定性. 为揭示催化剂稳定性提升的机理, 本文采用X射线光电子能谱、球差校正电镜、程序升温脱附/还原、吡啶吸附红外和甲基环己烷程序升温表面反应等多种结构表征技术对催化剂进行了深入分析. 结果显示, 亚纳米MoOx的引入促进了Pt纳米颗粒的超细分散, 并有效抑制了高温条件下的颗粒烧结. 这种强金属-载体相互作用不仅稳定了贵金属颗粒, 还改善了其电子结构, 进而提升了催化活性. 此外, 原位X射线吸收谱和原位红外光谱表征进一步揭示, 催化剂表面存在带正电荷的Ptδ+物种, 这类活性位点有助于加速甲苯产物的脱附过程, 减缓了催化剂表面的积碳积累, 提高了催化剂的使用寿命.

综上所述, 本研究提出的Pt-MoOx/γ-Al2O3双金属催化剂通过合理设计和调控, 实现了高效且稳定的甲基环己烷脱氢性能, 展现了优异的应用前景. 该催化体系不仅为甲基环己烷基LOHCs技术的产业化提供了坚实的基础, 也为贵金属催化剂的稳定化设计提供了新的思路.

关键词: 液态有机储氢载体, 制氢, 甲基环己烷, 催化脱氢, Pt-Mo催化剂

Abstract:

Methylcyclohexane (MCH) stands out as a leading liquid organic hydrogen carrier (LOHC) due to its favorable hydrogen storage capacity and transportability. Despite its potential, advancing catalysts that combine high efficiency, cost-effectiveness, and durability for MCH dehydrogenation to produce hydrogen remains a critical challenge hindering large-scale industrial deployment. Herein, we report the synthesis of highly dispersed and stable bimetallic Pt-MoOx nanoparticles immobilized on γ-Al2O3. The introduction of MoOx species significantly improves the stability of Pt and results in a high toluene (TOL) selectivity of 99.8 % with MCH conversion of 99.5% and a high hydrogen evolution rate of 470.5 mmol·gPt-1·min-1 at 340 °C. Moreover, the optimal catalyst exhibits a remarkable long-term stability, with no evident loss of activity in 140-h dehydrogenation reaction at a weight hourly space velocity of 11.7 h-1. Through detailed in-situ structure analyses, it was revealed that the introduction of subnanometer MoOx species facilitates the generation of ultrafine Pt nanoparticles with improved resistance to sintering, resulting in enhanced catalytic activity and durability of the noble metal. Furthermore, in-situ spectroscopic characterization demonstrates the positively charged Ptδ+ species promote the rapid desorption of TOL products. The excellent catalytic performance including high conversion and selectivity and superior stability offers great opportunities for their practical applications in LOHC technologies.

Key words: Liquid organic hydrogen carriers, Hydrogen production, Methylcyclohexane, Dehydrogenation, Pt-Mo catalyst