催化学报 ›› 2025, Vol. 74: 22-70.DOI: 10.1016/S1872-2067(25)64720-6
郑馨龙a,1, 宋一铭a,1, 王崇太b,*(), 高奇志a, 邵钟鋆a, 林佳鑫a, 翟佳迪a, 李静a, 史晓东a, 吴道雄a, 刘维峰a, 黄玮a, 陈琦a, 田新龙a,*(
), 刘雨昊a,*(
)
收稿日期:
2025-01-17
接受日期:
2025-04-09
出版日期:
2025-07-18
发布日期:
2025-07-20
通讯作者:
*电子信箱: oehy2014@163.com (王崇太),tianxl@hainanu.edu.cn (田新龙),yhliu@hainanu.edu.cn (刘雨昊).作者简介:
1共同第一作者.
基金资助:
Xinlong Zhenga,1, Yiming Songa,1, Chongtai Wangb,*(), Qizhi Gaoa, Zhongyun Shaoa, Jiaxin Lina, Jiadi Zhaia, Jing Lia, Xiaodong Shia, Daoxiong Wua, Weifeng Liua, Wei Huanga, Qi Chena, Xinlong Tiana,*(
), Yuhao Liua,*(
)
Received:
2025-01-17
Accepted:
2025-04-09
Online:
2025-07-18
Published:
2025-07-20
Contact:
*E-mail: About author:
Chongtai Wang (College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology) received his Ph.D. degree from the College of Chemistry, Sun Yat-Sen University in 2008. He joined the Department of Chemistry, College of Chemistry and Chemical Engineering, Hainan Normal University in 1983, and was promoted to associate professor and full professor in 1999 and 2008, respectively. In 2024, he was hired as a professor in the College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology. His research interests mainly focus on electrochemical energy storage, electrocatalysis, photocatalysis and photoelectric conversion. Supported by:
摘要:
对传统化石能源的过度消耗造成了当今社会的能源短缺与环境污染问题, 因此迫切需要探索可再生清洁能源, 以满足社会发展的长期需求. 鉴于氢能源本身具有高能量密度及零污染的特性, 可有效替代传统化石能源. 利用半导体光催化剂实现可再生的太阳能驱动光催化制氢(PHE), 是一种理想的制氢技术. 近年来报道的铜基、锌基多元过渡金属硫化物(MMS)半导体光催化剂因具有合适的带隙、较宽的光吸收范围和可控的元素组成, 在实现高效PHE方面具有巨大潜力. 尽管已取得了可观的研究进展, 但仍无法满足当前的商业化应用需求, 凸显了实现高效PHE的机制理解和优化策略的进一步需求.
基于此, 本文首先阐述了PHE的基本原理以及提升半导体光催化剂PHE性能的优化策略. 对PHE机理和半导体基本性质的深入研究, 使得MMS半导体光催化剂通过形貌/结构优化、元素掺杂、空位调控、助催化剂负载以及异质结构建等方面的优化取得了重大进展. 随后, 全面总结了铜/锌体系MMS光催化剂在PHE应用中的研究进展. 在铜基光催化剂中, CuInS2, CuPbSbS3和Cu2ZnSnS4表现出明显的可见光吸收特性和优化的载流子动力学. 这些材料在带隙工程和缺陷特性方面表现出独特的优势, 使其具备较大潜力实现高效的太阳能转换应用. 在锌基MMS光催化剂中, 主要讨论了ZnxCd1−xS固溶体和ZnIn2S4, 强调了因优化的电子结构和高效电荷分离效率而具备的优异光催化活性. 对上述材料的系统总结不仅促进了对结构-性能关系的基本理解, 还为合理设计高效PHE性能的先进半导体光催化剂提供了科学指导. 最后, 系统总结了当前光催化全解水制氢方面尚未解决的关键问题与挑战. 目前, 铜/锌体系MMS光催化剂在OER应用过程中(如污染物降解)的效率普遍较低. 因此, 未来研究中的方向总结如下: (1) 继续优化先进Z型(或S型)异质结光催化剂, 抑制副反应并探索解决动力学缓慢和气体析出的方法. (2) 探索更先进的合成方法, 优化铜/锌体系MMS光催化剂的本征特性. (3) 专注于新兴的铜基MMS光催化剂, 特别是3D电子维度、缺陷容忍的CuPbSbS3光催化剂. (4) 以机器学习和原位表征为出发点, 实现对电荷迁移行为的更深入理解. (5) 精确控制和定位活性位点位置.
虽然目前关于铜/锌体系MMS光催化剂的研究可能尚未对工业制氢产生深远影响, 但本综述为该领域的未来工作提供了科学指导, 特别是关于新型光催化剂的开发和优化策略的改进. 随着铜/锌体系MMS光催化剂的不断增强和技术进步, 其PHE性能有望进一步实现大幅度的提高, 为可预见的商业化应用提供技术支持.
郑馨龙, 宋一铭, 王崇太, 高奇志, 邵钟鋆, 林佳鑫, 翟佳迪, 李静, 史晓东, 吴道雄, 刘维峰, 黄玮, 陈琦, 田新龙, 刘雨昊. 铜/锌体系多元过渡金属硫化物光催化剂的半导体特性及其光催化制氢的应用与挑战[J]. 催化学报, 2025, 74: 22-70.
Xinlong Zheng, Yiming Song, Chongtai Wang, Qizhi Gao, Zhongyun Shao, Jiaxin Lin, Jiadi Zhai, Jing Li, Xiaodong Shi, Daoxiong Wu, Weifeng Liu, Wei Huang, Qi Chen, Xinlong Tian, Yuhao Liu. Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution[J]. Chinese Journal of Catalysis, 2025, 74: 22-70.
Fig. 1. (a) Illustration of nature photosynthesis I and II with charge separation process of “Z-scheme”. (b) Uphill and downhill thermodynamics photocatalytic reactions. Reprinted with permission from Ref. [83]. Copyright 2018, American Chemical Society. (c) Mechanism illustration and charge transfer behavior of PHE via water splitting. Reprinted with permission from Ref. [77]. Copyright 2021, Springer Singapore. (d) PHE process in sacrificial reagents system. (e) Photogenerated charge transfer behaviors before participating in HER and OER. Reprinted with permission from Ref. [85]. Copyright 2022, Elsevier.
Fig. 3. (a) Restored structure of O-ZnIn2S4. (b) Band structure of O-ZnIn2S4 and pure ZnIn2S4. Ultrafast transient absorption spectroscopy of pure ZnIn2S4 (c) and O-ZnIn2S4 (d). Reprinted with permission from Ref. [101]. Copyright 2016, Wiley. Steady-state PL spectra (e) and time-resolved PL decay spectra (f) of ZnIn2S4, Cu0.5-ZnIn2S4, and Cu3.6-ZnIn2S4. Reprinted with permission from Ref. [102]. Copyright 2019, Wiley.
Fig. 5. Diagrammatic representation of charge migration processes in a standalone photocatalyst (a), type-I heterojunction (b), type-II heterojunction (c), p-n heterojunction (d), Z-scheme heterojunction (lacking an electron mediator) (e) and Z-scheme heterojunction (incorporating an electron mediator) (f) within heterojunction-based photocatalytic systems.
Fig. 6. (a) Representative semiconductor photocatalysts with different band structures. Reprinted with permission from Ref. [129]. Copyright 2020, Elsevier. S-scheme heterojunction charge migration dynamics: prior to contact (b), post-contact (c), and during illumination (d).
Fig. 7. CuInS2 semiconductor photocatalyst characteristics: crystalline structure (a), Brillouin region (b), and DFT-determined electronic energy band configuration (c). Reprinted with permission from Ref. [134]. Copyright 2015, American Physical Society. (d) Crystalline transformation from the layered structure of CuSbS2 to the 3D crystal structure of CuPbSbS3 through the addition of PbS. Electronic energy band configurations of CuSbS2 (e) and CuPbSbS3 (f) as determined by DFT calculations. (g) Total and projected DOS for CuPbSbS3. (h) Charge-state transition levels associated with intrinsic defects in CuPbSbS3, as computed using DFT. Reprinted with permission from Ref. [140]. Copyright 2020, Elsevier. (i) Structural composition and formation pathway of kesterite CZTS (The bottom panel illustrates the projection of the associated crystal lattice). (j) Structural arrangement of wurtzite CZTS. Electronic energy band diagrams for (k) kesterite and (l) wurtzite forms of CZTS. (i,k) Reprinted with permission from Ref. [119]. Copyright 2017, Wiley. (j,l) Reprinted with permission from Ref. [145]. Copyright 2013, Elsevier.
Fig. 8. Structural configurations of ZnS (a), CdS (b), and Zn0.5Cd0.5S (c). The color coding is as follows: Zn in red; Cd in blue; and S in yellow. DFT-determined electronic energy band diagrams for ZnS (d), Zn0.9Cd0.1S (e), Zn0.7Cd0.3S (f), Zn0.5Cd0.5S (g), Zn0.3Cd0.7S (h), Zn0.1Cd0.9S (i), and CdS (j). (k) CB and VB edges of ZnxCd1?xS as the x value decreases from 1 to 0. Reprinted with permission from Ref. [162]. Copyright 2013, American Chemical Society. Structural arrangements of cubic (l), hexagonal (m), and rhombohedral (n) forms of ZnIn2S4. Electronic energy band diagrams for cubic (o) and hexagonal (p) variants of ZnIn2S4. Reprinted with permission from Ref. [174]. Copyright 2015, Royal Society of Chemistry.
Fig. 9. Synthesis process (a) and SEM image (b) of monodisperse CuInS2 hierarchical microarchitectures. Reprinted with permission from Ref. [175]. Copyright 2009, American Chemical Society. Charge transfer behavior during PHE process in the photocatalysts of CuInS2 QDs (c) and TiO2/CuInS2 QDs/CdS (d). Reprinted with permission from Ref. [177]. Copyright 2013, Elsevier. (e) CuInS2-ZnS. Reprinted with permission from Ref. [178]. Copyright 2018, Royal Society of Chemistry. (f) VESTA calculation of S sublattice alignment at the Cu2?xS@CuInS2 composite. (g) Schematic illustration of hollow CuInS2 nanododecahedrons by TEM characterization. Reprinted with permission from Ref. [179]. Copyright 2019, American Chemical Society.
Fig. 10. (a) Structures and charge transfer behaviors of CuInS2 with MoS2 as the cocatalyst. Reprinted with permission from Ref. [180]. Copyright 2016, Wiley. (b,c) Heterojunction construction of type-I: CuInS2/ZnIn2S4. Reprinted with permission from Ref. [181]. Copyright 2019, American Chemical Society. (d,e) Type-II: CuInS2/CdSe. Reprinted with permission from Ref. [182]. Copyright 2022, Elsevier. (f) CuInS2/ZnIn2S4. Reprinted with permission from Ref. [183]. Copyright 2021, Elsevier. (g) CuInS2/rGO/ZnIn2S4. Reprinted with permission from Ref. [184]. Copyright 2021, Elsevier. (h) p-n: CuInS2/ZnIn2S4. Reprinted with permission from Ref. [185]. Copyright 2020, American Chemical Society.
Fig. 11. CuInS2-based photocatalysts featuring Z-scheme and S-scheme heterojunction configurations. (a) Z-scheme: CuInS2/TiO2. Reprinted with permission from Ref. [186]. Copyright 2020, Royal Society of Chemistry. (b) CuInS2/g-C3N4. Reprinted with permission from Ref. [187]. Copyright 2017, American Chemical Society. (c) CuInS2/NCN-CNx/Au. Reprinted with permission from Ref. [188]. Copyright 2021, American Chemical Society. S-scheme: (d) CuInS2/g-C3N4. Reprinted with permission from Ref. [189]. Copyright 2020, Elsevier. (e) CuInS2/Ti3C2 MXene@TiO2. Reprinted with permission from Ref. [190]. Copyright 2022, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CuInS2 | micro-spherical | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 420 nm) | 59.4 | — | [ |
QDs | Ru | — | Na2S/Na2SO3 | 450 W Hg lamp (λ > 400 nm) | 418 | 4.74% λ = 400 nm | [ | |
nanododecahedrons | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1120 | — | [ | |
— | MoS2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 316 | — | [ | |
CuInS2/ZnIn2S4 | 2D/2D structure | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3430.2 | 12.4% λ = 420 nm | [ |
CuInS2/CdSe | microflowers | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp | 10610.37 | 48.97% λ = 420 nm | [ |
CuInS2/ZnIn2S4 | QDs | 0.75 wt% Pt | type-II | Na2S/Na2SO3 | 1000 W Xe lamp (λ > 420 nm) | 1041.46 | 30.6% λ = 420 nm | [ |
CuInS2/rGO/ZnIn2S4 | sphere-like | — | type-II | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 33746 | — | [ |
CuInS2/ZnIn2S4 | microflowers core-shell | — | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1168 | — | [ |
CuInS2/TiO2 | — | — | Z-scheme | Methanol | 300 W Xe lamp (AM 1.5G) | 655.1 | — | [ |
CuInS2/g-C3N4 | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1290 | 4.23% λ = 420 nm | [ |
CuInS2/NCN-CNx | — | Au | Z-scheme | TEOA | 300 W Xe lamp | 10720 | — | [ |
CuInS2/g-C3N4 | — | — | S-scheme | TEOA | 350 W Xe lamp (λ > 420 nm) | 373 | 4.32% λ = 420 nm | [ |
CuInS2/Ti3C2 MXene@TiO2 | — | — | S-scheme | methanol | 300 W Xe lamp | 356.27 | 0.37% λ = 400 nm | [ |
Table 1 PHE performances of CuInS2-based photocatalysts optimized using (1) engineering of morphology and structure and (2) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CuInS2 | micro-spherical | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 420 nm) | 59.4 | — | [ |
QDs | Ru | — | Na2S/Na2SO3 | 450 W Hg lamp (λ > 400 nm) | 418 | 4.74% λ = 400 nm | [ | |
nanododecahedrons | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1120 | — | [ | |
— | MoS2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 316 | — | [ | |
CuInS2/ZnIn2S4 | 2D/2D structure | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3430.2 | 12.4% λ = 420 nm | [ |
CuInS2/CdSe | microflowers | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp | 10610.37 | 48.97% λ = 420 nm | [ |
CuInS2/ZnIn2S4 | QDs | 0.75 wt% Pt | type-II | Na2S/Na2SO3 | 1000 W Xe lamp (λ > 420 nm) | 1041.46 | 30.6% λ = 420 nm | [ |
CuInS2/rGO/ZnIn2S4 | sphere-like | — | type-II | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 33746 | — | [ |
CuInS2/ZnIn2S4 | microflowers core-shell | — | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1168 | — | [ |
CuInS2/TiO2 | — | — | Z-scheme | Methanol | 300 W Xe lamp (AM 1.5G) | 655.1 | — | [ |
CuInS2/g-C3N4 | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1290 | 4.23% λ = 420 nm | [ |
CuInS2/NCN-CNx | — | Au | Z-scheme | TEOA | 300 W Xe lamp | 10720 | — | [ |
CuInS2/g-C3N4 | — | — | S-scheme | TEOA | 350 W Xe lamp (λ > 420 nm) | 373 | 4.32% λ = 420 nm | [ |
CuInS2/Ti3C2 MXene@TiO2 | — | — | S-scheme | methanol | 300 W Xe lamp | 356.27 | 0.37% λ = 400 nm | [ |
Fig. 12. (a) PHE rate of CuPbSbS3 photocatalyst and the comparison with other MS-based photocatalysts under the same test condition. (b) PHE mechanism and charge transfer behavior of CuPbSbS3 photocatalyst. (c) Crystal structure of bournonite CuPbSbS3. (d,e) Eleven absorption sites on the exposed (002) surface of CuPbSbS3. Hydrogen adsorption configurations of S1 (f) and S4 (g) sites (inset is the corresponding calculated ΔGH*). (h) Calculated ΔGH* with the adsorbed configurations of S1?S11. Reprinted with permission from Ref. [195]. Copyright 2022, Elsevier. Fabrication (i), band potential (j), and piezo-photocatalytic (k) degradation mechanism of BaTiO3/CuPbSbS3 heterojunction photocatalyst. Reprinted with permission from Ref. [196]. Copyright 2024, Elsevier.
Fig. 13. PHE rates, BET areas (a) and surface specific activities, crystallinities (b) of nanocrystalline CZTS photocatalyst at different annealing temperatures. Reprinted with permission from Ref. [208]. Copyright 2015, Elsevier. (c) PHE rates of phase-transition CZTS photocatalysts through the temperature evolution. Reprinted with permission from Ref. [209]. Copyright 2014, Royal Society of Chemistry. (d) PHE performance comparison of CZTS nanoplate, CZTS nanorod, and Au/CZTS core-shell nanoparticles. (e) PHE mechanism and (f) energy diagram of Au/CZTS core-shell photocatalyst. Reprinted with permission from Ref. [212]. Copyright 2014, Wiley. PHE mechanism of Au/CZTS (g) and Pt/CZTS (h). (i) PHE performances of pure CZTS, Au/CZTS, and Pt/CZTS. Reprinted with permission from Ref. [213]. Copyright 2014, American Chemical Society.
Fig. 14. (a) PHE performance of pure CZTS and PtCo/CZTS with different Pt/Co ratios. Reprinted with permission from Ref. [214]. Copyright 2015, American Chemical Society. (b) Schematic illustration of the fabrication process and the corresponding SEM and TEM images of SiO2/CZTS. Reprinted with permission from Ref. [215]. Copyright 2017, Elsevier. CZTS-based heterojunction photocatalysts of type-II: (c) CZTS/MoS2. Reprinted with permission from Ref. [217]. Copyright 2018, Elsevier. (d) Ag/CZTS/PANI. Reprinted with permission from Ref. [218]. Copyright 2018, American Chemical Society. p-n: (e) CZTS/CeO2. Reprinted with permission from Ref. [219]. Copyright 2019, Royal Society of Chemistry. (f) CZTS/CdS. Reprinted with permission from Ref. [220]. Copyright 2018, Elsevier. Z-scheme: (g) CZTS/Cu2O. Reprinted with permission from Ref. [221]. Copyright 2020, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CZTS | nanosheets | — | — | Na2S/Na2SO3 | 500 W Xe lamp | 30 | — | [ |
nanocrystals | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 64.5 | — | [ | |
phase transition | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 54.8 | — | [ | |
microspheres | — | — | Na2S/Na2SO3 | 300 W Xe lamp | 24.4 | — | [ | |
nanoparticles | — | — | Na2S/Na2SO3 | 100 W Xe lamp (λ > 400 nm) | 68.68 | — | [ | |
core-shell | Au | — | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 102 | — | [ | |
— | Pt | — | Na2S/Na2SO3 | 300 W Xe lamp | 1020 | — | [ | |
— | PtCo | — | Na2S/Na2SO3 | 300 W Xe lamp | 1850 | — | [ | |
— | SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 52.9 | — | [ | |
CZTS/MoS2 | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 470 | — | [ |
CZTS/PANI | — | Ag | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 859.6 | 30.5% λ = 450 nm | [ |
CZTS/CeO2 | — | — | p-n | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 2930 | — | [ |
CZTS/CdS | — | 0.5 wt% Pt | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11540 | — | [ |
CZTS/Cu2O | — | — | Z-scheme | Methanol | 300 W Xe lamp (λ > 420 nm) | 17940 | — | [ |
Table 2 PHE performances of CZTS-based photocatalysts optimized using (1) control of morphology; (2) loading of cocatalyst via Schottky junction formation, and (3) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (μmol g−1 h−1) | AQY | Ref. | ||
---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Cocatalyst loading | Heterojunction construction | ||||||
CZTS | nanosheets | — | — | Na2S/Na2SO3 | 500 W Xe lamp | 30 | — | [ |
nanocrystals | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 64.5 | — | [ | |
phase transition | 0.5 wt% Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 54.8 | — | [ | |
microspheres | — | — | Na2S/Na2SO3 | 300 W Xe lamp | 24.4 | — | [ | |
nanoparticles | — | — | Na2S/Na2SO3 | 100 W Xe lamp (λ > 400 nm) | 68.68 | — | [ | |
core-shell | Au | — | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 102 | — | [ | |
— | Pt | — | Na2S/Na2SO3 | 300 W Xe lamp | 1020 | — | [ | |
— | PtCo | — | Na2S/Na2SO3 | 300 W Xe lamp | 1850 | — | [ | |
— | SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 52.9 | — | [ | |
CZTS/MoS2 | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 470 | — | [ |
CZTS/PANI | — | Ag | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 859.6 | 30.5% λ = 450 nm | [ |
CZTS/CeO2 | — | — | p-n | Na2S/Na2SO3 | 150 W Xe lamp (λ > 420 nm) | 2930 | — | [ |
CZTS/CdS | — | 0.5 wt% Pt | p-n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11540 | — | [ |
CZTS/Cu2O | — | — | Z-scheme | Methanol | 300 W Xe lamp (λ > 420 nm) | 17940 | — | [ |
Fig. 15. Several representative reported ZnxCd1?xS photocatalysts with the optimization strategy of control of morphology and design of structure. (a) Flower-like nanorods. Reprinted with permission from Ref. [93]. Copyright 2020, Elsevier. (b) Double-shell hollow nanospheres. Reprinted with permission from Ref. [222]. Copyright 2018, Elsevier. (c) ZIF-8 templated QDs. Reprinted with permission from Ref. [227]. Copyright 2019, American Chemical Society. (d) Dodecahedral hollow structure. Reprinted with permission from Ref. [228]. Copyright 2017, Royal Society of Chemistry. (e) ZIF-67 templated nanoparticles. Reprinted with permission from Ref. [229]. Copyright 2020, Elsevier. (f) Hollow-structured cubic-like. Reprinted with permission from Ref. [230]. Copyright 2022, American Chemical Society.
Fig. 16. Electronic band structures of Zn0.375Cd0.625S (a) and Zn0.75Cd0.25S (b). (c) Mechanism illustration of vacancy introducing on the PHE performance enhancement. Reprinted with permission from Ref. [231]. Copyright 2016, Wiley. UV-Vis spectra (d), XPS-VB spectra (e), and PHE mechanism (f) of Zn0.5Cd0.5S and Zn0.5Cd0.5S-P photocatalysts. Reprinted with permission from Ref. [232]. Copyright 2018, Elsevier. Fabrication process (g) and PHE mechanism (h) of ZnxCd1?xS-P photocatalyst. Reprinted with permission from Ref. [233]. Copyright 2020, Royal Society of Chemistry. (i) Band structures of ZnxCd1?xS (black) and Li-EDA treated ZnxCd1?xS photocatalysts. (j) Charge transfer behaviors of Li-EDA treated ZnxCd1?xS photocatalyst. Reprinted with permission from Ref. [234]. Copyright 2021, Tsinghua University Press.
Fig. 17. Photocatalysts derived from ZnxCd1?xS via cocatalyst loading optimization strategies. (a) Fe0.3Pt0.7-doped ZnxCd1?xS. Reprinted with permission from Ref. [235]. Copyright 2017, Elsevier. (b,c) SiO2/Pt/ZnxCd1?xS. Reprinted with permission from Ref. [236]. Copyright 2021, American Chemical Society. (d) NixB/ZnxCd1?xS. Reprinted with permission from Ref. [238]. Copyright 2020, Royal Society of Chemistry. (e) NiCoP/Zn0.5Cd0.5S. Reprinted with permission from Ref. [239]. Copyright 2020, Springer. (f) NiSx/ZnxCd1?xS. Reprinted with permission from Ref. [240]. Copyright 2021, Royal Society of Chemistry. (g) Co-CoO/Zn0.5Cd0.5S. Reprinted with permission from Ref. [242]. Copyright 2021, Royal Society of Chemistry. (h) Co-MoSx/ZnxCd1?xS. Reprinted with permission from Ref. [243]. Copyright 2021, Elsevier. (i) Co3O4-WP/ZnxCd1?xS. Reprinted with permission from Ref. [244]. Copyright 2022, Elsevier.
Photocatalyst | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnxCd1−xS | nanorods (flower) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp (λ > 420 nm) | 12.57 | — | [ |
Zn0.46Cd0.54S | nanospheres (double-shell hollow) | — | 0.5 wt% Pt | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 4.11 | 23.6% λ = 420 nm | [ |
Zn0.5Cd0.5S | QDs (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.7 | — | [ |
Zn0.6Cd0.4S | hollow cages (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.68 | — | [ |
Zn0.5Cd0.5S | nanoparticles (MOF: ZIF-67) | — | — | — | lactic acid | 5 W LED lamp | 23.2646 | 6.59% λ = 420 nm | [ |
ZnxCd1−xS | cubic-like (NiCoP frameworks) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp | 73 | — | [ |
ZnxCd1−xS | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11.42 | — | [ |
Zn0.5Cd0.5S | — | S-rich vacancy | — | — | — | 3 W LED lamp | 0.419 | 0.12% λ = 420 nm | [ |
ZnxCd1−xS | ZIF-8 | S-rich vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 2.86 | 0.71% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn, S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 33.6 | 25.4% λ = 420 nm | [ |
ZnxCd1−xS | — | — | 0.5 wt% Fe0.3Pt0.7 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.265 | — | [ |
ZnxCd1−xS | core-shell | — | Pt-SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.3 | — | [ |
ZnxCd1−xS | — | — | NixB | — | lactic acid | 5 W Xe lamp | 30.42 | 5.8% λ = 475 nm | [ |
Zn0.5Cd0.5S | — | — | NiCoP | — | lactic acid | 5 W LED white lamp | 15.79 | 6.28% λ = 475 nm | [ |
ZnxCd1−xS | — | — | NiSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 67.75 | 10.24% λ = 420 nm | [ |
Zn0.3Cd0.7S | — | — | Ni3C | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.31 | — | [ |
Zn0.5Cd0.5S | — | — | Co-CoO | — | Na2S/Na2SO3 | 300 W Xe lamp (780 nm > λ > 420 nm) | 8.152 | — | [ |
ZnxCd1−xS | — | — | Co-MoSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 13.787 | 21.7% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn vacancy | Co3O4 | — | — | 5 W LED lamp | 0.061 | 27.6% λ = 420 nm | [ |
CdS@ZnxCd1−xS/ WS2 | nanosheets | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 34.86 | — | [ |
ZnxCd1−xS/CdS | ZIF-8, QDs | — | — | type-II | Na2S/Na2SO3 | 350 W Xe lamp (λ > 420 nm) | 2.7 | 3.84% λ = 400 nm | [ |
ZnxCd1−xS/CdS | core-shell | Zn vacancy | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.17 | — | [ |
ZnxCd1−xS/ CoAl-LDH | — | — | — | type-II | Lactic acid | 5 W LED lamp | 30.32 | 4.67% λ = 420 nm | [ |
Zn0.5Cd0.5S/NiSe2 | — | — | — | Type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 121.01 | — | [ |
Zn0.5Cd0.5S/OLC | hexagonal nanosheets | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 10.8 | 26.6% λ = 400 nm | [ |
ZnxCd1−xS/Co3O4 | — | — | carbon particles | p-n | lactic acid | 5 W LED lamp | 28.1 | — | [ |
Zn0.7Cd0.3S/NiWO4 | — | — | — | p-n | Na2S/Na2SO3 | 5 W LED white lamp (λ > 420 nm) | 15.95 | — | [ |
Zn0.5Cd0.5S/MCo2O4 | — | — | — | p-n | Na2S/Na2SO3 | 3 W LED lamp (λ > 420 nm) | 71.13 | — | [ |
ZnxCd1−xS/Fe2O3 | QDs, graphene | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 26.8 | — | [ |
ZnxCd1−xS/α-Fe2O3 | — | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.37 | 11.2% λ = 420 nm | [ |
ZnxCd1−xS/ZnS | MOF | Zn vacancy | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.31 | — | [ |
ZnxCd1−xS/Co9S8 | — | — | — | S-scheme | lactic acid | 5 W LED lamp | 19.57 | — | [ |
ZnxCd1−xS/ Co@CoO | — | S vacancy | — | S-scheme | — | 300 W Xe lamp (λ > 420 nm) | 0.793 | — | [ |
Table 3 PHE performances of ZnxCd1?xS-based photocatalysts optimized using (1) engineering of morphology and structure; (2) doping; (3) introduction of vacancy; (4) loading of cocatalyst via Schottky junction formation, and (5) heterojunction construction.
Photocatalyst | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnxCd1−xS | nanorods (flower) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp (λ > 420 nm) | 12.57 | — | [ |
Zn0.46Cd0.54S | nanospheres (double-shell hollow) | — | 0.5 wt% Pt | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 4.11 | 23.6% λ = 420 nm | [ |
Zn0.5Cd0.5S | QDs (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.7 | — | [ |
Zn0.6Cd0.4S | hollow cages (MOF: ZIF-8) | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.68 | — | [ |
Zn0.5Cd0.5S | nanoparticles (MOF: ZIF-67) | — | — | — | lactic acid | 5 W LED lamp | 23.2646 | 6.59% λ = 420 nm | [ |
ZnxCd1−xS | cubic-like (NiCoP frameworks) | — | — | — | Na2S/Na2SO3 | 5 W LED lamp | 73 | — | [ |
ZnxCd1−xS | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 11.42 | — | [ |
Zn0.5Cd0.5S | — | S-rich vacancy | — | — | — | 3 W LED lamp | 0.419 | 0.12% λ = 420 nm | [ |
ZnxCd1−xS | ZIF-8 | S-rich vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 2.86 | 0.71% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn, S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 33.6 | 25.4% λ = 420 nm | [ |
ZnxCd1−xS | — | — | 0.5 wt% Fe0.3Pt0.7 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.265 | — | [ |
ZnxCd1−xS | core-shell | — | Pt-SiO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.3 | — | [ |
ZnxCd1−xS | — | — | NixB | — | lactic acid | 5 W Xe lamp | 30.42 | 5.8% λ = 475 nm | [ |
Zn0.5Cd0.5S | — | — | NiCoP | — | lactic acid | 5 W LED white lamp | 15.79 | 6.28% λ = 475 nm | [ |
ZnxCd1−xS | — | — | NiSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 67.75 | 10.24% λ = 420 nm | [ |
Zn0.3Cd0.7S | — | — | Ni3C | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.31 | — | [ |
Zn0.5Cd0.5S | — | — | Co-CoO | — | Na2S/Na2SO3 | 300 W Xe lamp (780 nm > λ > 420 nm) | 8.152 | — | [ |
ZnxCd1−xS | — | — | Co-MoSx | — | lactic acid | 300 W Xe lamp (λ > 420 nm) | 13.787 | 21.7% λ = 420 nm | [ |
ZnxCd1−xS | — | Zn vacancy | Co3O4 | — | — | 5 W LED lamp | 0.061 | 27.6% λ = 420 nm | [ |
CdS@ZnxCd1−xS/ WS2 | nanosheets | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 34.86 | — | [ |
ZnxCd1−xS/CdS | ZIF-8, QDs | — | — | type-II | Na2S/Na2SO3 | 350 W Xe lamp (λ > 420 nm) | 2.7 | 3.84% λ = 400 nm | [ |
ZnxCd1−xS/CdS | core-shell | Zn vacancy | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.17 | — | [ |
ZnxCd1−xS/ CoAl-LDH | — | — | — | type-II | Lactic acid | 5 W LED lamp | 30.32 | 4.67% λ = 420 nm | [ |
Zn0.5Cd0.5S/NiSe2 | — | — | — | Type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 121.01 | — | [ |
Zn0.5Cd0.5S/OLC | hexagonal nanosheets | — | — | type-II | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 10.8 | 26.6% λ = 400 nm | [ |
ZnxCd1−xS/Co3O4 | — | — | carbon particles | p-n | lactic acid | 5 W LED lamp | 28.1 | — | [ |
Zn0.7Cd0.3S/NiWO4 | — | — | — | p-n | Na2S/Na2SO3 | 5 W LED white lamp (λ > 420 nm) | 15.95 | — | [ |
Zn0.5Cd0.5S/MCo2O4 | — | — | — | p-n | Na2S/Na2SO3 | 3 W LED lamp (λ > 420 nm) | 71.13 | — | [ |
ZnxCd1−xS/Fe2O3 | QDs, graphene | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 26.8 | — | [ |
ZnxCd1−xS/α-Fe2O3 | — | — | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 5.37 | 11.2% λ = 420 nm | [ |
ZnxCd1−xS/ZnS | MOF | Zn vacancy | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.31 | — | [ |
ZnxCd1−xS/Co9S8 | — | — | — | S-scheme | lactic acid | 5 W LED lamp | 19.57 | — | [ |
ZnxCd1−xS/ Co@CoO | — | S vacancy | — | S-scheme | — | 300 W Xe lamp (λ > 420 nm) | 0.793 | — | [ |
Fig. 18. Recently reported type-I, type-II, and p-n heterojunction photocatalysts based on ZnxCd1?xS. Type-I: (a) CdS@ZnxCd1?xS/WS2. Reprinted with permission from Ref. [245]. Copyright 2020, Elsevier. Type-II: (b,c) ZnxCd1?xS/CdS along with ZIF-8 and QDs modification. Reprinted with permission from Ref. [246]. Copyright 2021, Royal Society of Chemistry. (d) ZnxCd1?xS/CdS along with core-shell modification. Reprinted with permission from Ref. [247]. Copyright 2017, Wiley. (e) ZnxCd1?xS/CoAl-LDH. Reprinted with permission from Ref. [248]. Copyright 2020, Elsevier. (f) Zn0.5Cd0.5S/NiSe2. Reprinted with permission from Ref. [249]. Copyright 2021, Elsevier. (g) Zn0.5Cd0.5S/OLC. Reprinted with permission from Ref. [250]. Copyright 2020, Elsevier. p-n: (h) ZnxCd1?xS/Co3O4. Reprinted with permission from Ref. [251]. Copyright 2020, Elsevier. (i) Zn0.7Cd0.3S/NiWO4. Reprinted with permission from Ref. [252]. Copyright 2019, Elsevier. (j) Zn0.5Cd0.5S/MCo2O4. Reprinted with permission from Ref. [253]. Copyright 2021, Elsevier.
Fig. 19. Recently reported Z-scheme and S-scheme heterojunction photocatalysts based on ZnxCd1?xS. Z-scheme: (a,b) ZnxCd1?xS/Fe2O3. Reprinted with permission from Ref. [254]. Copyright 2021, Elsevier. S-scheme: (c,d) ZnxCd1?xS/ZnS. Reprinted with permission from Ref. [256]. Copyright 2021, Wiley. (e) ZnxCd1?xS/Co9S8. Reprinted with permission from Ref. [257]. Copyright 2021, Elsevier. (f) ZnxCd1?xS/Co@CoO. Reprinted with permission from Ref. [258]. Copyright 2022, Elsevier.
Fig. 20. ZnIn2S4-based photocatalysts with the optimization strategy of control of morphology and design of structure. (a) Core-shell carbon nanofiber. Reprinted with permission from Ref. [259]. Copyright 2014, American Chemical Society. (b) Octahedron NH2-UiO-66 flower-like microspheres. Reprinted with permission from Ref. [260]. Copyright 2019, American Chemical Society. (c) Pd@NH2-UiO-66 flower-like microspheres. Reprinted with permission from Ref. [261]. Copyright 2021, Elsevier. (d) MOFL hollow tubular. Reprinted with permission from Ref. [96]. Copyright 2021, Elsevier. (e) Hollow structure nanocubes. Reprinted with permission from Ref. [262]. Copyright 2021, Elsevier. (f) Yolk-shelled nanoparticles. Reprinted with permission from Ref. [263]. Copyright 2021, Elsevier.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Doping strategy | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnIn2S4 | nanospheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.045 | 2.6% λ = 420 nm | [ |
rose-like microclusters | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.611 | 11.9% λ = 420 nm | [ | |
persimmon-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.22 | 13.16% λ = 420 nm | [ | |
ultrathin nanosheets | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.94 | 10.1% λ = 420 nm | [ | |
Carbon nanofiber/ZnIn2S4 | core-shell | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.17 | 23.35% λ = 420 nm | [ |
NH2-UiO-66 /ZnIn2S4 | flower-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.199 | — | [ |
Pd@NH2-UiO-66/ZnIn2S4 | flower-like microspheres | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 5.26 | 3.2% λ = 420 nm | [ |
ZnIn2S4 | MOFL hollow tubular | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 28.2 | 22.67% λ = 350 nm | [ |
Cu2MoS4/ ZnIn2S4 | hollow structure nanocubes | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.103 | 7.4% λ = 350 nm | [ |
ZnIn2S4/ NiCo2S4/Co3O4 | yolk-shelled nanoparticles | — | — | — | — | — | 300 W Xe lamp (λ > 400 nm) | 0.103 | 9.2% λ = 400 nm | [ |
ZnIn2S4 | — | Cu-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 430 nm) | 0.758 | 9.6% λ = 420 nm | [ |
— | Mn-doped | — | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 430 nm) | 1.22 | — | [ | |
— | Cu-doped | — | — | — | Ascorbic acid | Solar simulator (AM 1.5G) | 26.2 | 4.76% λ = 420 nm | [ | |
— | Ag-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 6.344 | — | [ | |
— | Nd-doped | — | — | — | Na2S/Na2SO3 | 250 W Xe lamp | 11.38 | — | [ | |
— | Ti-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.685 | — | [ | |
— | Ce-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.46 | 6.56% λ = 380 nm | [ | |
— | Mo-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 4.62 | 14.74% λ = 380 nm | [ | |
— | N-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 11.086 | 16.8% λ = 420 nm | [ | |
— | O-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.12 | — | [ | |
— | Ni/In-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 10.97 | 0.148% λ = 400 nm | [ | |
— | — | S vacancy | — | — | Lactic acid | 300 W Xe lamp (λ = 320-780 nm) | 6.884 | 63.87% λ = 400 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 13.478 | 22.39% λ = 420 nm | [ | |
— | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 1.541 | 49.0% λ = 440 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.4 | 0.16% λ = 420 nm | [ | |
— | — | Zn vacancy | — | — | Methanol | 300 W Xe lamp (λ > 420 nm) | 10.19 | 5.79% λ = 420 nm | [ | |
— | — | In vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 13.4 | — | [ | |
— | — | S vacancy | Ti3C2Tx | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.42 | 40.1% λ = 420 nm | [ | |
— | — | S vacancy | — | — | — | 300 W Xe lamp (λ > 420 nm) | 0.068 | 0.041% λ = 420 nm | [ | |
— | — | — | Pt single-sites | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 17.5 | 50.4% λ = 420 nm | [ | |
— | — | — | Au | — | Benzyl alcohol | 300 W Xe lamp (λ > 420 nm) | 1.6334 | — | [ | |
— | — | — | Au@Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 4.1747 | 6.23% λ = 420 nm | [ | |
— | — | — | Ag0.6Au0.4 | — | Na2S/Na2SO3 | 300 W Xe lamp | 5.4 | 8.06% λ = 420 nm | [ | |
— | — | — | Ag0.25Pd0.75 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.254 | 15.8% λ = 420 nm | [ | |
— | — | — | Ag, α-MnO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.65 | — | [ | |
— | — | — | Pt and BP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.278 | 24.7% λ = 420 nm | [ | |
— | — | — | Ti3C2-QDs and Ti(IV) | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 7.52 | 6.22% λ = 420 nm | [ | |
— | — | — | NiCo2S4 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 3.9 | 0.68% λ = 400 nm | [ | |
— | — | — | Co9S8 and PdS | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 11.407 | 71.2% λ = 420 nm | [ | |
— | — | — | CoP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.775 | 24.1% λ = 420 nm | [ | |
— | — | — | NiSe2 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.487 | 6.1% λ = 420 nm | [ | |
— | — | — | SnSe | — | TEOA | 300 W Xe lamp (λ = 400-800 nm) | 5.656 | 3.58% λ = 420 nm | [ | |
ZnIn2S4/g-C3N4 | — | — | — | 1 wt% Pt | type-I | TEOA | 300 W Xe lamp | 4.854 | — | [ |
ZnIn2S4/g-C3N4 | — | — | — | NiS | type-I | TEOA | 300 W Xe lamp | 5.02 | 30.5% λ = 420 nm | [ |
ZnIn2S4/NaNbO3 | nanorods | — | — | Pt | type-I | TEOA | 300 W Xe lamp | 30.04 | 4.7% λ = 420 nm | [ |
ZnIn2S4/CaTiO3 | nanocubes | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 22.186 | — | [ |
ZnIn2S4/CdIn2S4 | 2D/3D structure | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.67 | 18.73% λ = 420 nm | [ |
ZnIn2S4/Mo2C | — | — | — | — | type-I | TEOA | 300 W Xe lamp AM 1.5G | 40.93 | 71.6% λ = 420 nm | [ |
ZnIn2S4/g-C3N4 | 2D/2D structure | — | — | — | type-II | lactic acid | 300 W Xe lamp (λ > 420 nm) | 10.92 | 10.74% λ = 420 nm | [ |
ZnIn2S4/CdS | 1D/2D structure | — | — | — | type-II | TEOA | 300 W Xe lamp (λ = 350-780 nm) | 5.8 | 0.48% λ = 420 nm | [ |
ZnIn2S4/Ni-Fe LDH | MOF-shelled | — | — | — | Type-II | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.036 | 7.28% λ = 420 nm | [ |
ZnIn2S4/Ti3C2 MXene@TiO2 | — | — | — | Ti3C2 MXene | Type-II | Na2S/Na2SO3 | 300 W Xe lamp | 1.186 | — | [ |
ZnIn2S4/Ag2O | QDs | — | — | 3 wt% Pt | p−n | TEOA | 300 W Xe lamp | 9.337 | 0.9% λ = 420 nm | [ |
ZnIn2S4/CoFe2O4 | — | — | — | — | p−n | TEOA | 250 W Xe lamp (λ > 420 nm) | 0.8 | 5% λ = 420 nm | [ |
ZnIn2S4/CuS | 2D/2D structure | — | — | — | p−n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 7.91 | 2.52% λ = 420 nm | [ |
ZnIn2S4/MoS2 | 2D/2D structure | — | — | — | p−n | lactic acid | 300 W Xe lamp | 151.42 | 13.67% λ = 420 nm | [ |
ZnIn2S4/NiTiO3 | — | — | — | — | Z-scheme | TEOA | 3×300 W LED (λ > 420 nm) | 4.43 | 4.39% λ = 450 nm | [ |
ZnIn2S4/CNTs/ RP | — | — | S vacancy | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp | 1.634 | — | [ |
ZnIn2S4/Cu3P | — | — | — | 0.5 wt% Pt | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.56 | 22.3% λ = 420 nm | [ |
ZnIn2S4/ H2Ta2O6 | octahedral | — | — | 1 wt% Pt | Z-scheme | TEOA | 300 W Xe lamp AM 1.5G | 3.217 | 5.2% λ = 420 nm | [ |
ZnIn2S4/ MxMoO3 | nanobelts | — | — | — | Z-scheme | TEOA | 300 W LED (λ > 420 nm) | 5.9 | 32.95% λ = 420 nm | [ |
ZnIn2S4/Au/TiO2 | urchin-like | — | — | — | Z-scheme | — | 300 W Xe lamp | 0.1863 | — | [ |
ZnIn2S4/BiVO4 | QDs | — | — | Ti3C2 MXene | Z-scheme | — | 300 W Xe lamp (λ >400 nm) | 0.10267 | 2.4% λ = 410 nm | [ |
ZnIn2S4/BiOBr | — | — | — | 1 wt% Pt | Z-scheme | — | 300 W LED (λ > 420 nm) | 0.628 | 8.57% λ = 420 nm | [ |
ZnIn2S4/perylene-dicarboximide | — | — | — | — | Z-scheme | — | 300 W Xe lamp (λ > 400 nm) | 0.2754 | 10.69% λ = 410 nm | [ |
ZnIn2S4/Co3O4 | Core-shell | — | — | — | S-scheme | TEOA | 300 W Xe lamp (λ = 420-780 nm) | 6.7 | 11% λ = 420 nm | [ |
ZnIn2S4/MoO3 | — | Mo- doped | — | — | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 5.5 | 4.82% λ = 420 nm | [ |
ZnIn2S4/ SnNb2O6 | — | Ni- doped | — | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.807 | 7.8% λ = 420 nm | [ |
ZnIn2S4/TiO2 | — | O- doped | O vacancy | — | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.585 | — | [ |
ZnIn2S4/TiO2 | 1D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp | 6.03 | 10.49% λ = 420 nm | [ |
ZnIn2S4/ZnWO4 | — | — | — | — | S-scheme | Methanol | 300 W Xe lamp | 4.925 | — | [ |
ZnIn2S4/CdS | 2D/2D structure | — | — | Ti3C2 MXene | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.93 | 0.79% λ = 420 nm | [ |
ZnIn2S4/ Bi4Ti3O12 | 2D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 19.8 | 11% λ = 420 nm | [ |
Table 4 PHE performances of ZnIn2S4-based photocatalysts optimized using (1) engineering of morphology and structure; (2) doping; (3) introduction of vacancy; (4) loading of cocatalyst via Schottky junction formation, and (5) heterojunction construction.
Photocatalysts | Optimization strategy | Sacrificial reagent | Light source | PHE rate (mmol g−1 h−1) | AQY | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Morphology control and structure design | Doping strategy | Vacancy introducing | Cocatalyst loading | Heterojunction construction | ||||||
ZnIn2S4 | nanospheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.045 | 2.6% λ = 420 nm | [ |
rose-like microclusters | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.611 | 11.9% λ = 420 nm | [ | |
persimmon-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 0.22 | 13.16% λ = 420 nm | [ | |
ultrathin nanosheets | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.94 | 10.1% λ = 420 nm | [ | |
Carbon nanofiber/ZnIn2S4 | core-shell | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.17 | 23.35% λ = 420 nm | [ |
NH2-UiO-66 /ZnIn2S4 | flower-like microspheres | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.199 | — | [ |
Pd@NH2-UiO-66/ZnIn2S4 | flower-like microspheres | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 5.26 | 3.2% λ = 420 nm | [ |
ZnIn2S4 | MOFL hollow tubular | — | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 28.2 | 22.67% λ = 350 nm | [ |
Cu2MoS4/ ZnIn2S4 | hollow structure nanocubes | — | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.103 | 7.4% λ = 350 nm | [ |
ZnIn2S4/ NiCo2S4/Co3O4 | yolk-shelled nanoparticles | — | — | — | — | — | 300 W Xe lamp (λ > 400 nm) | 0.103 | 9.2% λ = 400 nm | [ |
ZnIn2S4 | — | Cu-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 430 nm) | 0.758 | 9.6% λ = 420 nm | [ |
— | Mn-doped | — | — | — | Na2S/Na2SO3 | 500 W Xe lamp (λ > 430 nm) | 1.22 | — | [ | |
— | Cu-doped | — | — | — | Ascorbic acid | Solar simulator (AM 1.5G) | 26.2 | 4.76% λ = 420 nm | [ | |
— | Ag-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 6.344 | — | [ | |
— | Nd-doped | — | — | — | Na2S/Na2SO3 | 250 W Xe lamp | 11.38 | — | [ | |
— | Ti-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.685 | — | [ | |
— | Ce-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.46 | 6.56% λ = 380 nm | [ | |
— | Mo-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 4.62 | 14.74% λ = 380 nm | [ | |
— | N-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 11.086 | 16.8% λ = 420 nm | [ | |
— | O-doped | — | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.12 | — | [ | |
— | Ni/In-doped | — | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 10.97 | 0.148% λ = 400 nm | [ | |
— | — | S vacancy | — | — | Lactic acid | 300 W Xe lamp (λ = 320-780 nm) | 6.884 | 63.87% λ = 400 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 13.478 | 22.39% λ = 420 nm | [ | |
— | — | S vacancy | — | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 1.541 | 49.0% λ = 440 nm | [ | |
— | — | S vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.4 | 0.16% λ = 420 nm | [ | |
— | — | Zn vacancy | — | — | Methanol | 300 W Xe lamp (λ > 420 nm) | 10.19 | 5.79% λ = 420 nm | [ | |
— | — | In vacancy | — | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 13.4 | — | [ | |
— | — | S vacancy | Ti3C2Tx | — | TEOA | 300 W Xe lamp (λ > 400 nm) | 7.42 | 40.1% λ = 420 nm | [ | |
— | — | S vacancy | — | — | — | 300 W Xe lamp (λ > 420 nm) | 0.068 | 0.041% λ = 420 nm | [ | |
— | — | — | Pt single-sites | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 17.5 | 50.4% λ = 420 nm | [ | |
— | — | — | Au | — | Benzyl alcohol | 300 W Xe lamp (λ > 420 nm) | 1.6334 | — | [ | |
— | — | — | Au@Pt | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 4.1747 | 6.23% λ = 420 nm | [ | |
— | — | — | Ag0.6Au0.4 | — | Na2S/Na2SO3 | 300 W Xe lamp | 5.4 | 8.06% λ = 420 nm | [ | |
— | — | — | Ag0.25Pd0.75 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.254 | 15.8% λ = 420 nm | [ | |
— | — | — | Ag, α-MnO2 | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 3.65 | — | [ | |
— | — | — | Pt and BP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 1.278 | 24.7% λ = 420 nm | [ | |
— | — | — | Ti3C2-QDs and Ti(IV) | — | Na2S/Na2SO3 | 300 W Xe lamp AM 1.5G | 7.52 | 6.22% λ = 420 nm | [ | |
— | — | — | NiCo2S4 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 3.9 | 0.68% λ = 400 nm | [ | |
— | — | — | Co9S8 and PdS | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 11.407 | 71.2% λ = 420 nm | [ | |
— | — | — | CoP | — | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 8.775 | 24.1% λ = 420 nm | [ | |
— | — | — | NiSe2 | — | TEOA | 300 W Xe lamp (λ > 420 nm) | 1.487 | 6.1% λ = 420 nm | [ | |
— | — | — | SnSe | — | TEOA | 300 W Xe lamp (λ = 400-800 nm) | 5.656 | 3.58% λ = 420 nm | [ | |
ZnIn2S4/g-C3N4 | — | — | — | 1 wt% Pt | type-I | TEOA | 300 W Xe lamp | 4.854 | — | [ |
ZnIn2S4/g-C3N4 | — | — | — | NiS | type-I | TEOA | 300 W Xe lamp | 5.02 | 30.5% λ = 420 nm | [ |
ZnIn2S4/NaNbO3 | nanorods | — | — | Pt | type-I | TEOA | 300 W Xe lamp | 30.04 | 4.7% λ = 420 nm | [ |
ZnIn2S4/CaTiO3 | nanocubes | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 22.186 | — | [ |
ZnIn2S4/CdIn2S4 | 2D/3D structure | — | — | — | type-I | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 12.67 | 18.73% λ = 420 nm | [ |
ZnIn2S4/Mo2C | — | — | — | — | type-I | TEOA | 300 W Xe lamp AM 1.5G | 40.93 | 71.6% λ = 420 nm | [ |
ZnIn2S4/g-C3N4 | 2D/2D structure | — | — | — | type-II | lactic acid | 300 W Xe lamp (λ > 420 nm) | 10.92 | 10.74% λ = 420 nm | [ |
ZnIn2S4/CdS | 1D/2D structure | — | — | — | type-II | TEOA | 300 W Xe lamp (λ = 350-780 nm) | 5.8 | 0.48% λ = 420 nm | [ |
ZnIn2S4/Ni-Fe LDH | MOF-shelled | — | — | — | Type-II | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.036 | 7.28% λ = 420 nm | [ |
ZnIn2S4/Ti3C2 MXene@TiO2 | — | — | — | Ti3C2 MXene | Type-II | Na2S/Na2SO3 | 300 W Xe lamp | 1.186 | — | [ |
ZnIn2S4/Ag2O | QDs | — | — | 3 wt% Pt | p−n | TEOA | 300 W Xe lamp | 9.337 | 0.9% λ = 420 nm | [ |
ZnIn2S4/CoFe2O4 | — | — | — | — | p−n | TEOA | 250 W Xe lamp (λ > 420 nm) | 0.8 | 5% λ = 420 nm | [ |
ZnIn2S4/CuS | 2D/2D structure | — | — | — | p−n | Na2S/Na2SO3 | 300 W Xe lamp (λ > 400 nm) | 7.91 | 2.52% λ = 420 nm | [ |
ZnIn2S4/MoS2 | 2D/2D structure | — | — | — | p−n | lactic acid | 300 W Xe lamp | 151.42 | 13.67% λ = 420 nm | [ |
ZnIn2S4/NiTiO3 | — | — | — | — | Z-scheme | TEOA | 3×300 W LED (λ > 420 nm) | 4.43 | 4.39% λ = 450 nm | [ |
ZnIn2S4/CNTs/ RP | — | — | S vacancy | — | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp | 1.634 | — | [ |
ZnIn2S4/Cu3P | — | — | — | 0.5 wt% Pt | Z-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.56 | 22.3% λ = 420 nm | [ |
ZnIn2S4/ H2Ta2O6 | octahedral | — | — | 1 wt% Pt | Z-scheme | TEOA | 300 W Xe lamp AM 1.5G | 3.217 | 5.2% λ = 420 nm | [ |
ZnIn2S4/ MxMoO3 | nanobelts | — | — | — | Z-scheme | TEOA | 300 W LED (λ > 420 nm) | 5.9 | 32.95% λ = 420 nm | [ |
ZnIn2S4/Au/TiO2 | urchin-like | — | — | — | Z-scheme | — | 300 W Xe lamp | 0.1863 | — | [ |
ZnIn2S4/BiVO4 | QDs | — | — | Ti3C2 MXene | Z-scheme | — | 300 W Xe lamp (λ >400 nm) | 0.10267 | 2.4% λ = 410 nm | [ |
ZnIn2S4/BiOBr | — | — | — | 1 wt% Pt | Z-scheme | — | 300 W LED (λ > 420 nm) | 0.628 | 8.57% λ = 420 nm | [ |
ZnIn2S4/perylene-dicarboximide | — | — | — | — | Z-scheme | — | 300 W Xe lamp (λ > 400 nm) | 0.2754 | 10.69% λ = 410 nm | [ |
ZnIn2S4/Co3O4 | Core-shell | — | — | — | S-scheme | TEOA | 300 W Xe lamp (λ = 420-780 nm) | 6.7 | 11% λ = 420 nm | [ |
ZnIn2S4/MoO3 | — | Mo- doped | — | — | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 5.5 | 4.82% λ = 420 nm | [ |
ZnIn2S4/ SnNb2O6 | — | Ni- doped | — | — | S-scheme | Na2S/Na2SO3 | 300 W Xe lamp (λ > 420 nm) | 2.807 | 7.8% λ = 420 nm | [ |
ZnIn2S4/TiO2 | — | O- doped | O vacancy | — | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 2.585 | — | [ |
ZnIn2S4/TiO2 | 1D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp | 6.03 | 10.49% λ = 420 nm | [ |
ZnIn2S4/ZnWO4 | — | — | — | — | S-scheme | Methanol | 300 W Xe lamp | 4.925 | — | [ |
ZnIn2S4/CdS | 2D/2D structure | — | — | Ti3C2 MXene | S-scheme | TEOA | 300 W Xe lamp (λ > 420 nm) | 8.93 | 0.79% λ = 420 nm | [ |
ZnIn2S4/ Bi4Ti3O12 | 2D/2D structure | — | — | 1 wt% Pt | S-scheme | TEOA | 300 W Xe lamp (λ > 400 nm) | 19.8 | 11% λ = 420 nm | [ |
Fig. 21. Mn-, Cr-, Fe-, and Co-doped ZnIn2S4 photocatalysts: established band structures (a), UV-vis (b), and PL spectra (c). Reprinted with permission from Ref. [265]. Copyright 2011, Elsevier. Illustration of the PHE process in (d) Cu-doped ZnIn2S4. Reprinted with permission from Ref. [102]. Copyright 2019, Wiley. (e) Mo-doped ZnIn2S4. Reprinted with permission from Ref. [270]. Copyright 2020, Wiley. (f) Ti-doped ZnIn2S4. Reprinted with permission from Ref. [268]. Copyright 2020, Royal Society of Chemistry. (g) Nd-doped ZnIn2S4. Reprinted with permission from Ref. [267]. Copyright 2020, Elsevier.
Fig. 22. (a) Hydrogen production mechanism of ZnIn2S4 photocatalyst with S-rich vacancies. Reprinted with permission from Ref. [273]. Copyright 2018, American Chemical Society. (b) Band structures and corresponding PHE mechanism illustration of bilayer ZnIn2S4 (left), monolayer ZnIn2S4 (middle), and monolayer ZnIn2S4 with S vacancies. Reprinted with permission from Ref. [274]. Copyright 2019, Elsevier. (c) Charger transfer routes of ZnIn2S4 photocatalyst with Zn vacancies. Reprinted with permission from Ref. [276]. Copyright 2022, Elsevier. (d) Kinetics process simulation of charges in S-vacancy-controlled ZnIn2S4 photocatalyst. Reprinted with permission from Ref. [279]. Copyright 2021, Elsevier. (e) Charge transfer behaviors of gradient H migration on ZnIn2S4 photocatalyst with S vacancies. Reprinted with permission from Ref. [278]. Copyright 2021, American Chemical Society. (f) PHE mechanism illustration of ZnIn2S4 photocatalyst with rhombohedral phase and S vacancies. Reprinted with permission from Ref. [280]. Copyright 2022, American Chemical Society.
Fig. 23. ZnIn2S4-based photocatalyst with the loading of cocatalyst of noble-metal, noble-metal-based alloy, and non-noble-metal cocatalysts. (a) DFT-calculated charge difference surface of ZnIn2S4 photocatalyst with Pt single-sites loading. (b) Band structure difference between pure ZnIn2S4 and Pt single-sites loaded ZnIn2S4. Reprinted with permission from Ref. [281]. Copyright 2022, Springer. PHE mechanisms and charge transfer behaviors of recently developed ZnIn2S4-based photocatalysts: (c) Au/ZnIn2S4. Reprinted with permission from Ref. [282]. Copyright 2019, Elsevier. (d) Ag0.25Pd0.75/ZnIn2S4. Reprinted with the permission from Ref. [283]. Copyright 2022, Elsevier. (e) CoP/ZnIn2S4. Reprinted with permission from Ref. [284]. Copyright 2020, Wiley. (f) Ti3C2-QDs/ZnIn2S4. Reprinted with permission from Ref. [285]. Copyright 2022, MDPI.
Fig. 24. Representative ZnIn2S4-based heterojunction photocatalysts. (a) Type-I ZnIn2S4/g-C3N4. Reprinted with permission from Ref. [286]. Copyright 2020, Elsevier. (b) Type-II ZnIn2S4/g-C3N4. Reprinted with permission from Ref. [287]. Copyright 2021, Wiley. (c) p-n ZnIn2S4/CoFe2O4. Reprinted with permission from Ref. [288]. Copyright 2021, Elsevier. (d) Z-scheme ZnIn2S4/Au/TiO2. Reprinted with permission from Ref. [289]. (e) Z-scheme ZnIn2S4/BiVO4. Reprinted with permission from Ref. [290]. Copyright 2020, Elsevier. (f) S-scheme ZnIn2S4/SnNb2O6. Reprinted with permission from Ref. [291]. Copyright 2022, American Chemical Society.
|
[1] | 周正宇, 靳治良. 自定义暴露晶面: 最佳晶面各向异性和欧姆异质结的协同效应促进光催化析氢[J]. 催化学报, 2025, 74(7): 294-307. |
[2] | 朱君江, 黎小芳. 调节硼化镍助剂的d-p杂化效应促进高效光催化产氢[J]. 催化学报, 2025, 72(5): 1-3. |
[3] | 徐君, 罗英, 郭乔琪, 孙文峥, 陈闪山, 王征, 贺泓. 可见光驱动的Mg掺杂SrTaO2N催化剂助力Z-型光催化全水分解[J]. 催化学报, 2024, 65(10): 70-78. |
[4] | 杨成, 李鑫, 李梅, 梁桂杰, 靳治良. CuMn2O4/石墨炔S型异质结上锚定氧化助催化剂促进曙红敏化光催化析氢[J]. 催化学报, 2024, 56(1): 88-103. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 苏慧, 姜静, 宋少佳, 安博涵, 李宁, 高旸钦, 戈磊. 过渡金属硫化物相关电催化剂的设计与应用研究[J]. 催化学报, 2023, 44(1): 7-49. |
[7] | 张美玉, 秦朝朝, 孙万军, 董聪朝, 钟俊, 吴凯丰, 丁勇. 双助催化剂负载CdS的能量捕集和电荷分离增强产H2[J]. 催化学报, 2022, 43(7): 1818-1829. |
[8] | 黄根, 李莹莹, 陈如, 肖朝辉, 杜石谦, 黄裕呈, 谢超, 董崇礼, 易海波, 王双印. 电化学形成的PtFeNi合金与含缺陷NiFe LDHs载体之间的电荷转移实现高效水分解[J]. 催化学报, 2022, 43(4): 1101-1110. |
[9] | 张亚萍, 徐继香, 周洁, 王磊. 金属-有机框架衍生的多功能光催化剂[J]. 催化学报, 2022, 43(4): 971-1000. |
[10] | 李月华, 唐紫蓉, 徐艺军. 以石墨烯作用为导向的多功能石墨烯基复合光催化剂[J]. 催化学报, 2022, 43(3): 708-730. |
[11] | 蒋洁, 王国宏, 邵琰池, 王娟, 周双, 苏耀荣. 增强制氢性能的ZnO@ZnS空心微球S型异质结光催化剂[J]. 催化学报, 2022, 43(2): 329-338. |
[12] | 靳治良, 李红英, 李俊柯. 硫化钴改性石墨炔构建S型异质结高效光催化产氢[J]. 催化学报, 2022, 43(2): 303-315. |
[13] | 孙龙, 李铃铃, 杨娟, 范佳杰, 徐全龙. 构建S型异质结COF/CdS以增强太阳光产氢[J]. 催化学报, 2022, 43(2): 350-358. |
[14] | 黄婷, 陈佳琪, 张莉莉, Alireza Khataee, 韩巧凤, 刘孝恒, 孙敬文, 朱俊武, 潘书刚, 汪信, 付永胜. 前驱体改性法制备薄层多孔富氨基的石墨相氮化碳用于光催化降解RhB和光催化制氢[J]. 催化学报, 2022, 43(2): 497-506. |
[15] | 高学友, 曾德乾, 杨静仁, Ong Wee-Jun, Fujita Toyohisa, 何祥龙, 刘杰芡, 韦悦周. 超薄Ni(OH)2纳米片修饰Zn0.5Cd0.5S纳米颗粒作为二维/零维异质结构光催化剂可见光下光催化制氢[J]. 催化学报, 2021, 42(7): 1137-1146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||