催化学报 ›› 2025, Vol. 74: 22-70.DOI: 10.1016/S1872-2067(25)64720-6

• 综述 • 上一篇    下一篇

铜/锌体系多元过渡金属硫化物光催化剂的半导体特性及其光催化制氢的应用与挑战

郑馨龙a,1, 宋一铭a,1, 王崇太b,*(), 高奇志a, 邵钟鋆a, 林佳鑫a, 翟佳迪a, 李静a, 史晓东a, 吴道雄a, 刘维峰a, 黄玮a, 陈琦a, 田新龙a,*(), 刘雨昊a,*()   

  1. a海南大学化学工程与技术学院, 物理与光电工程学院, 海洋科学与工程学院, 热带海洋材料及评价全国重点实验室, 网络空间安全学院(密码学院), 机电工程学院, 海南海口 570228
    b海南科技职业大学, 海南海口 571126
  • 收稿日期:2025-01-17 接受日期:2025-04-09 出版日期:2025-07-18 发布日期:2025-07-20
  • 通讯作者: *电子信箱: oehy2014@163.com (王崇太),tianxl@hainanu.edu.cn (田新龙),yhliu@hainanu.edu.cn (刘雨昊).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家自然科学基金(22469007);国家自然科学基金(22462006);国家自然科学基金(52404316);国家自然科学基金(22305055);国家自然科学基金(52362010);国家自然科学基金(22402043);国家自然科学基金(52461040);国家自然科学基金(22462008);海南大学创业研究基金项目(KYQD(ZR)-20008);海南大学创业研究基金项目(20082);海南大学创业研究基金项目(20083);海南大学创业研究基金项目(20084);海南大学创业研究基金项目(21065);海南大学创业研究基金项目(21124);海南大学创业研究基金项目(21125);海南省研究生创新研究计划项目(Qhyb2023-20);海南大学海洋科技协同创新中心(XTCX2022HYC21);首批“南海新星”产业创新人才平台项目(NHXXRCXM202309006);海南省院士创新平台专项研究基金

Properties, applications, and challenges of copper- and zinc-based multinary metal sulfide photocatalysts for photocatalytic hydrogen evolution

Xinlong Zhenga,1, Yiming Songa,1, Chongtai Wangb,*(), Qizhi Gaoa, Zhongyun Shaoa, Jiaxin Lina, Jiadi Zhaia, Jing Lia, Xiaodong Shia, Daoxiong Wua, Weifeng Liua, Wei Huanga, Qi Chena, Xinlong Tiana,*(), Yuhao Liua,*()   

  1. aSchool of Chemical Engineering and Technology, School of Physics and Optoelectronic Engineering, School of Marine Science and Engineering, School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, School of Cyberspace Security (School of Cryptology), Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, Hainan, China
    bHainan Vocational University of Science and Technology, Haikou 571126, Hainan, China
  • Received:2025-01-17 Accepted:2025-04-09 Online:2025-07-18 Published:2025-07-20
  • Contact: *E-mail: oehy2014@163.com (C. Wang), tianxl@hainanu.edu.cn (X. Tian), yhliu@hainanu.edu.cn (Y. Liu).
  • About author:Chongtai Wang (College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology) received his Ph.D. degree from the College of Chemistry, Sun Yat-Sen University in 2008. He joined the Department of Chemistry, College of Chemistry and Chemical Engineering, Hainan Normal University in 1983, and was promoted to associate professor and full professor in 1999 and 2008, respectively. In 2024, he was hired as a professor in the College of Chemistry and Materials Engineering, Hainan Vocational University of Science and Technology. His research interests mainly focus on electrochemical energy storage, electrocatalysis, photocatalysis and photoelectric conversion.
    Xinlong Tian (School of Marine Science and Engineering, Hainan University) received his Ph.D. degree from South China University of Technology in 2016. Afterwards, he worked as a postdoctoral researcher in Huazhong University of Science and Technology from 2016 to 2019. Now he is the Principal Investigator of the Ocean Clean Energy Innovation Group, and his research interests are in the areas of nanostructured functional materials and their applications in Electrochemistry, Electrocatalysis, Sustainable energy and Fuel cells.
    Yuhao Liu (School of Physics and Optoelectronic Engineering, Hainan University) received his Ph.D. degree in 2017/06. From 2017/06 to 2020/06, he worked as the postdoctoral fellow in Wuhan National Laboratory for Optoelectronics (WNLO) at Huazhong University of Science and Technology. Currently, he holds the associate professor position in School of Physics and Optoelectronic Engineering in Hainan University. His research interest is the fabrication and utilization of metal chalcogenide photocatalysts for the application of photocatalytic hydrogen evolution.
    1Contributed equally to this work.
  • Supported by:
    National Natural Science Foundation of China(22469007);National Natural Science Foundation of China(22462006);National Natural Science Foundation of China(52404316);National Natural Science Foundation of China(22305055);National Natural Science Foundation of China(52362010);National Natural Science Foundation of China(22402043);National Natural Science Foundation of China(52461040);National Natural Science Foundation of China(22462008);Start-up Research Foundation of Hainan University(KYQD(ZR)-20008);Start-up Research Foundation of Hainan University(20082);Start-up Research Foundation of Hainan University(20083);Start-up Research Foundation of Hainan University(20084);Start-up Research Foundation of Hainan University(21065);Start-up Research Foundation of Hainan University(21124);Start-up Research Foundation of Hainan University(21125);Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2023-20);Collaborative Innovation Center of Marine Science and Technology of Hainan University(XTCX2022HYC21);The first batch of “Nanhai New Star” industrial innovation talent platform project(NHXXRCXM202309006);The specific research fund of The Innovation Platform for Academicians of Hainan Province

摘要:

对传统化石能源的过度消耗造成了当今社会的能源短缺与环境污染问题, 因此迫切需要探索可再生清洁能源, 以满足社会发展的长期需求. 鉴于氢能源本身具有高能量密度及零污染的特性, 可有效替代传统化石能源. 利用半导体光催化剂实现可再生的太阳能驱动光催化制氢(PHE), 是一种理想的制氢技术. 近年来报道的铜基、锌基多元过渡金属硫化物(MMS)半导体光催化剂因具有合适的带隙、较宽的光吸收范围和可控的元素组成, 在实现高效PHE方面具有巨大潜力. 尽管已取得了可观的研究进展, 但仍无法满足当前的商业化应用需求, 凸显了实现高效PHE的机制理解和优化策略的进一步需求.

基于此, 本文首先阐述了PHE的基本原理以及提升半导体光催化剂PHE性能的优化策略. 对PHE机理和半导体基本性质的深入研究, 使得MMS半导体光催化剂通过形貌/结构优化、元素掺杂、空位调控、助催化剂负载以及异质结构建等方面的优化取得了重大进展. 随后, 全面总结了铜/锌体系MMS光催化剂在PHE应用中的研究进展. 在铜基光催化剂中, CuInS2, CuPbSbS3和Cu2ZnSnS4表现出明显的可见光吸收特性和优化的载流子动力学. 这些材料在带隙工程和缺陷特性方面表现出独特的优势, 使其具备较大潜力实现高效的太阳能转换应用. 在锌基MMS光催化剂中, 主要讨论了ZnxCd1−xS固溶体和ZnIn2S4, 强调了因优化的电子结构和高效电荷分离效率而具备的优异光催化活性. 对上述材料的系统总结不仅促进了对结构-性能关系的基本理解, 还为合理设计高效PHE性能的先进半导体光催化剂提供了科学指导. 最后, 系统总结了当前光催化全解水制氢方面尚未解决的关键问题与挑战. 目前, 铜/锌体系MMS光催化剂在OER应用过程中(如污染物降解)的效率普遍较低. 因此, 未来研究中的方向总结如下: (1) 继续优化先进Z型(或S型)异质结光催化剂, 抑制副反应并探索解决动力学缓慢和气体析出的方法. (2) 探索更先进的合成方法, 优化铜/锌体系MMS光催化剂的本征特性. (3) 专注于新兴的铜基MMS光催化剂, 特别是3D电子维度、缺陷容忍的CuPbSbS3光催化剂. (4) 以机器学习和原位表征为出发点, 实现对电荷迁移行为的更深入理解. (5) 精确控制和定位活性位点位置.

虽然目前关于铜/锌体系MMS光催化剂的研究可能尚未对工业制氢产生深远影响, 但本综述为该领域的未来工作提供了科学指导, 特别是关于新型光催化剂的开发和优化策略的改进. 随着铜/锌体系MMS光催化剂的不断增强和技术进步, 其PHE性能有望进一步实现大幅度的提高, 为可预见的商业化应用提供技术支持.

关键词: 多元过渡金属硫化物, 半导体光催化剂, 光催化制氢, 优化策略, 全解水

Abstract:

The issues of fossil energy shortage and environmental pollution caused by the excessive consumption of conventional fossil fuels necessitates the exploration of renewable and clean energy sources such as hydrogen, which is viable alternative to traditional energy sources in view of its high energy density and nonpolluting nature. In this regard, photocatalytic technology powered by inexhaustible solar energy is an ideal hydrogen production method. The recently developed copper- and zinc-based multinary metal sulfide (MMS) semiconductor photocatalysts exhibit the advantages of suitable bandgap, wide light-harvesting range, and flexible elemental composition, thus possessing great potential for achieving considerable photocatalytic hydrogen evolution (PHE) performance. Despite great progress has been achieved, the current photocatalysts still cannot meet the commercial application demands, which highlights the mechanisms understanding and optimization strategies for efficient PHE. Herein, the basic mechanisms of PHE, and effective optimization strategies are firstly introduced. Afterwards, the research process and the performance of copper- and zinc-based MMS photocatalysts, are thoroughly reviewed. Finally, the unresolved issues, and challenges hindering the achievement of overall water splitting have been discussed.

Key words: Multinary metal sulfide, Semiconductor photocatalyst, Photocatalytic hydrogen evolution, Optimization strategy, Overall water splitting