催化学报 ›› 2025, Vol. 69: 84-98.DOI: 10.1016/S1872-2067(24)60197-X

• 论文 • 上一篇    下一篇

含孪晶结构的ZnCdS中ZnCoS的表面缺陷工程用于可见光驱动制氢与苯甲醇氧化的耦合

陈吉祥a,b, 张佩佩c, 陈秉辉a,b,c, 王伟俊a,b,c,d,e,f,*()   

  1. a马来西亚厦门大学能源与化学工程学院, 雪兰莪州, 马来西亚
    b马来西亚厦门大学纳米能源与催化技术卓越中心, 雪兰莪州, 马来西亚
    c厦门大学化学与化工学院固体表面物理化学国家重点实验室, 福建厦门 361005, 中国
    d厦门大学古雷创新研究院, 福建漳州363200, 中国
    e厦门大学深圳研究院, 广东深圳518057, 中国
    f韩国大学工程学院, 化学与生物工程系, 首尔, 韩国
  • 收稿日期:2024-08-17 接受日期:2024-11-13 出版日期:2025-02-18 发布日期:2025-02-10
  • 通讯作者: 电子信箱: weejun.ong@xmu.edu.my (王伟俊).
  • 基金资助:
    国家自然科学基金(22202168);广东省基础与应用基础研究基金(2021A1515111019);厦门大学固体表面物理化学国家重点实验室(2023X11);厦门大学马来西亚研究生(IENG/0038);厦门大学马来西亚研究基金(ICOE/0001);厦门大学马来西亚研究基金(XMUMRF/2021-C8/IENG/0041)

Surface defect engineering of ZnCoS in ZnCdS with twin crystal structure for visible-light-driven H2 production coupled with benzyl alcohol oxidation

Tan Ji Sianga,b, Peipei Zhangc, Binghui Chena,b,c, Wee-Jun Onga,b,c,d,e,f,*()   

  1. aSchool of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
    bCenter of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
    cState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    dGulei Innovation Institute Xiamen University, Zhangzhou 363200, Fujian, China
    eShenzhen Research Institute of Xiamen University, Shenzhen 518057, Guangdong, China
    fDepartment of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
  • Received:2024-08-17 Accepted:2024-11-13 Online:2025-02-18 Published:2025-02-10
  • Contact: E-mail: weejun.ong@xmu.edu.my (W.-J. Ong).
  • Supported by:
    National Natural Science Foundation of China(22202168);Guangdong Basic and Applied Basic Research Foundation(2021A1515111019);State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University(2023X11);Postgraduate of Xiamen University Malaysia(IENG/0038);Xiamen University Malaysia Research Fund(ICOE/0001);Xiamen University Malaysia Research Fund(XMUMRF/2021-C8/IENG/0041)

摘要:

有机合成和析氢的光还原双反应为协同生产清洁燃料和高质量化学品开辟了一条新途径, 提供了一种更有效的太阳能转换方法. 本文合成了闪锌矿(ZB)/纤锌矿(WZ)相结的具有表面缺陷工程的ZnCoS/ZnCdS异质结构, 用于苯甲醛(BAD)和析氢的光催化协同偶联反应. 这种ZnCoS/ZnCdS异质结构集成了ZnCdS半导体的优势, 并具备ZnCoS的助催化功能, 该功能源于Zn空位 (VZn-ZnCoS/Zn-CdS)或S空位 (VS-ZnCoS/ZnCdS) 的表面缺陷工程. 最佳的VS-ZnCoS/ZnCdS催化剂在可见光照射下同时表现出14.23 mmol h‒1 g‒1的H2生成速率和12.29 mmol h‒1 g‒1的BAD形成速率, 约是原始ZnCdS性能的两倍. 在模拟阳光照射(AM 1.5)下, VS-ZnCoS/ZnCdS上析氢速率达27.43 mmol gcat‒1 h‒1, 太阳能-氢气转换效率为0.52%, BAD生成速率为26.31 mmol gcat‒1 h‒1. 通过一系列原位表征和控制实验阐明了太阳能驱动机制, 揭示了ZnCdS中界面ZB/WZ结和ZnCoS的S空位对增强光氧化双重反应的协同作用. VS-ZnCoS/ZnCdS主要通过氧中心自由基与碳中心自由基途径相结合形成BAD, 同时电子驱动质子还原产生H2. 另外, ZnCoS表面空位的性质不仅有助于光诱导电荷载流子的分离, 而且能够通过调节氧中心自由基和碳中心自由基的形成来选择性地调节BAD产生的机制途径.

关键词: 光还原双反应, 芳香醇转化, 表面缺陷, 有机合成, 制氢

Abstract:

Photoredox dual reaction of organic synthesis and H2 evolution opens up a novel pathway for collaboratively generating clean fuels and high-quality chemicals, providing a more effective approach of solar energy conversion. Herein, a surface defect-engineered ZnCoS/ZnCdS heterostructure with zinc blende (ZB)/wurtzite (WZ) phase junctions is synthesized for photocatalytic cooperative coupling of benzaldehyde (BAD) and H2 production. This surface defect-engineered ZnCoS/ZnCdS heterostructure elaborately integrates the mixed phase junction advantage of ZnCdS semiconductor and the cocatalytic function of ZnCoS possessing Zn (VZn-ZnCoS/ZnCdS) or S vacancies (VS-ZnCoS/ZnCdS). The optimum VS-ZnCoS/ZnCdS simultaneously exhibits a superior H2 production rate of 14.23 mmol h-1 g-1 accompanied with BAD formation rate of 12.29 mmol h-1 g-1 under visible-light irradiation, which is approximately two-fold greater than that of pristine ZnCdS. Under simulated sunlight irradiation (AM 1.5), VS-ZnCoS/ZnCdS achieves H2 evolution (27.43 mmol gcat-1 h-1) with 0.52% of STH efficiency, accompany with 26.31 mmol gcat-1 h-1 of BAD formation rate. The underlying solar-driven mechanism is elucidated by a series of in-situ characterization and control experiments, which reveals the synergistic effect of interfacial ZB/WZ phase junctions in ZnCdS and S vacancies of ZnCoS on enhancement of the photoredox dual reaction. The VS-ZnCoS/ZnCdS follows a predominant oxygen-centered radical integrating with carbon-centered radical pathways for BAD formation and a simultaneous electron-driven proton reduction for H2 production. Interestingly, the nature of surface vacancies not only facilitates the separation of photoinduced charge carriers but also able to selectively adjust the mechanism pathway for BAD production via tuning the oxygen-centered radical and carbon-centered radical formation.

Key words: Photoredox dual reaction, Aromatic alcohol conversion, Surface vacancy, Organic synthesis, H2 production