催化学报 ›› 2025, Vol. 77: 171-183.DOI: 10.1016/S1872-2067(25)64773-5

• 论文 • 上一篇    下一篇

用于CO2高效加氢制甲醇Cu-Zn-Ce催化剂的协同界面工程

陈阳a,1, 周荻雯b,*,1(), 常永丽a, 林虹巧a, 许运钊a, 张勇a, 袁丁a, 吴立志a, 汤禹a, 代成义c, 李新刚d, 魏勤洪e,*(), 谭理a,*()   

  1. a福州大学化学学院, 能源与环境光催化国家重点实验室, 先进碳基功能材料福建省重点实验室, 福建福州 350108
    b上海大学环境与化学工程学院, 有机复合污染控制工程教育部重点实验室, 上海 010021
    c西北大学化工学院, 国家碳氢资源清洁利用国际科技合作基地, 陕北能源先进化工利用技术教育部工程研究中心, 陕西省洁净煤转化工程技术研究中心陕北能源化工产业发展协同创新中心, 陕西西安 710069
    d天津大学化工学院, 化学工程联合国家重点实验室, 天津化学化工协同创新中心, 天津市应用催化科学与工程重点实验室, 天津 300354
    e浙江海洋大学石油化工与环境学院, 浙江舟山 316022
  • 收稿日期:2025-04-22 接受日期:2025-06-02 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: diwenzhou@shu.edu.cn (周荻雯),weiqinhong@zjou.edu.cn (魏勤洪),tan@fzu.edu.cn (谭理).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发项目(2022YFB4101800);国家自然科学基金(22172032);国家自然科学基金(U22A20431);国家自然科学基金(22202180)

Synergistic interface engineering in Cu-Zn-Ce catalysts for efficient CO2 hydrogenation to methanol

Yang Chena,1, Diwen Zhoub,*,1(), Yongli Changa, Hongqiao Lina, Yunzhao Xua, Yong Zhanga, Ding Yuana, Lizhi Wua, Yu Tanga, Chengyi Daic, Xingang Lid, Qinhong Weie,*(), Li Tana,*()   

  1. aKey Laboratory of Advanced Carbon-Based Functional Materials, Fujian Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
    bKey Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
    cSchool of Chemical Engineering, International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi’an 710069, Shaanxi, China
    dState Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
    eDepartment of Chemical Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • Received:2025-04-22 Accepted:2025-06-02 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: diwenzhou@shu.edu.cn (D. Zhou), weiqinhong@zjou.edu.cn (Q. Wei), tan@fzu.edu.cn (L. Tan).
  • About author:1Contributed equally to this work.
  • Supported by:
    National Key Research and Development Program of China(2022YFB4101800);National Natural Science Foundation of China(22172032);National Natural Science Foundation of China(U22A20431);National Natural Science Foundation of China(22202180)

摘要:

二氧化碳(CO2)的过度排放导致全球气候变暖等环境问题, 将其催化转化为高附加值化学品和燃料成为研究热点. 甲醇(CH3OH)作为饱和一元醇, 具有高能量密度和高辛烷值等优良特性, 是理想的“绿氢”载体. 此外, CH3OH作为极其重要的基础化工原料, 被广泛用于合成一系列重要的工业化学品和燃料. CO2加氢制CH3OH不仅能够有效降低大气中CO2的浓度, 还能缓解能源紧缺的问题, 因而被研究人员广泛关注. 本研究提出了一种创新合成方法,聚焦于构建丰富的Cu-Zn-Ce三元界面, 在增强CO2活化能力和CH3OH产率的同时, 抑制催化剂失活和副产物CO的生成, 为CO2资源化利用提供了新策略.

本文创新性地采用尿素辅助研磨策略合成了Cu-Zn-Ce三元催化剂(CZC-G), 突破传统共沉淀法因金属沉淀动力学差异导致的界面受限问题, 实现了界面协同效应的优化, 在CO2加氢制CH3OH反应中表现出优异的性能. 经过优化制备方法, CZC-G催化剂展现出高达96.8%的CH3OH选择性和73.6 gMeOH·kgcat-1·h-1的时空产率(230 °C, 3.0 MPa, WHSV 8000 mL·gcat-1·h-1, CO2:H2 = 1:3). 此外, CZC-G催化剂在连续运行100 h的长期稳定性测试中未出现明显失活现象. 透射电子显微镜、X射线光电子能谱和X射线吸收光谱结果表明, 尿素辅助研磨法促进了Cu/Zn-Ov-Ce三元界面的形成, 并抑制了ZnO的还原. 这种独特的三元界面结构使得催化剂在CO2加氢过程中能够高效活化CO2, 并选择性稳定甲酸盐中间体(HCOO*), 从而有效抑制了逆水煤气变换反应的发生. 原位漫反射傅里叶变换红外光谱进一步揭示了反应主要遵循甲酸盐机理. 其中, HCOO*到CH3O*的转化是反应的速控步骤, Cu, Zn和Ce在三元界面的协同作用是实现高效CO2活化和CH3OH定向生成的关键因素.

综上, 本研究为CO2加氢制CH3OH提供了高效制备Cu-Zn-Ce三元催化剂的新方法, 催化剂以其优异的催化性能和稳定性, 成为工业应用中潜力巨大的候选材料. 同时, 本工作中关于三元界面结构与催化性能关系的深入理解, 为设计和开发新型多功能催化剂提供了重要的理论依据和实践指导, 推动了CO2资源化利用和“碳中和”相关催化剂研究的发展, 有望促进未来高性能催化剂的理性设计和大规模应用.

关键词: CO2加氢, 甲醇, Cu基催化剂, 三元界面, 甲酸盐机理

Abstract:

CO2 hydrogenation to CH3OH is of great significance for achieving carbon neutrality. Here, we show a urea-assisted grinding strategy for synthesizing Cu-Zn-Ce ternary catalysts (CZC-G) with optimized interfacial synergy, achieving superior performance in CO2 hydrogenation to methanol. The CZC-G catalyst demonstrated exceptional methanol selectivity (96.8%) and a space-time yield of 73.6 gMeOH·kgcat-1·h-1 under optimized conditions. Long-term stability tests confirmed no obvious deactivation over 100 h of continuous operation. Structural and mechanistic analyses revealed that the urea-assisted grinding method promotes the formation of Cu/Zn-Ov-Ce ternary interfaces and inhibits the reduction of ZnO, enabling synergistic interactions for efficient CO2 activation and selective stabilization of formate intermediates (HCOO*), which are critical for methanol synthesis. In-situ diffuse reflectance infrared Fourier transform spectra and X-ray absorption spectroscopy studies elucidated the reaction pathway dominated by the formate mechanism, while suppressing the reverse water-gas shift reaction. This work underscores the critical role of synthetic methodologies in engineering interfacial structures, offering a strategy for designing high-performance catalysts for sustainable CO2 resource utilization.

Key words: CO2 hydrogenation, Methanol, Cu-based catalyst, Ternary interface, Formate mechanism