催化学报 ›› 2025, Vol. 72: 301-313.DOI: 10.1016/S1872-2067(25)64657-2

• 论文 • 上一篇    下一篇

CO2加氢反应诱导过程中In2O3催化剂结构演变的实验和理论研究

蔚张茜a,b,1, 王明秀a,b,1, 路昕楠a,b,*(), 周紫璇a,b, 唐梓祁a,c, 常春然e, 杨永c, 李圣刚a,b,c,d,*(), 高鹏a,b,d,*()   

  1. a中国科学院上海高等研究院, 低碳转化科学与工程中心, 上海 201210
    b中国科学院大学, 北京 100049
    c上海科技大学物质科学与技术学院, 上海 201210
    d中国科学院上海高等研究院院, 低碳催化与二氧化碳利用全国重点实验室, 上海 201210
    e西安交通大学化学工程学院, 陕西省能源化工过程强化重点实验室, 陕西西安 710049
  • 收稿日期:2024-11-15 接受日期:2025-03-05 出版日期:2025-05-18 发布日期:2025-05-20
  • 通讯作者: *电子信箱: luxn@sari.ac.cn (路昕楠),lisg@sari.ac.cn (李圣刚),gaopeng@sari.ac.cn (高鹏).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家重点研发计划(2024YFB4006600)

An experimental and computational investigation on structural evolution of the In2O3 catalyst during the induction period of CO2 hydrogenation

Zhangqian Weia,b,1, Mingxiu Wanga,b,1, Xinnan Lua,b,*(), Zixuan Zhoua,b, Ziqi Tanga,c, Chunran Change, Yong Yangc, Shenggang Lia,b,c,d,*(), Peng Gaoa,b,d,*()   

  1. aCenter for Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    bUniversity of the Chinese Academy of Sciences, Beijing 100049, China
    cSchool of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
    dState Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    eShaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-11-15 Accepted:2025-03-05 Online:2025-05-18 Published:2025-05-20
  • Contact: *E-mail: luxn@sari.ac.cn (X. Lu), lisg@sari.ac.cn (S. Li), gaopeng@sari.ac.cn (P. Gao).
  • About author:1Contributed to this work equally.
  • Supported by:
    National Key R&D Program of China(2024YFB4006600)

摘要:

二氧化碳作为一种可广泛获取、廉价、无毒、无害的碳源, 能够在催化剂的辅助下与绿氢结合生产大宗化学品和甲醇等液体燃料. 甲醇合成是二氧化碳工业利用中最重要的可行方法之一, 该路线能够为生产绿色燃料和化学品提供平台, 拥有实现碳循环和回收的巨大潜力. 氧化铟(In2O3)作为一种高效催化二氧化碳加氢制甲醇的催化剂, 具有耐高温稳定性好等特点, 已经引起了极大的关注. 基于In2O3的二氧化碳加氢制甲醇催化剂已取得较大进展, 但仍存在转化率偏低、反应过程中存在逆水煤气变换反应生成一氧化碳副产物等问题. 了解结构-活性关系, 开发更高效的In2O3基催化剂, 亟需对实际反应条件下活性位点的演变有深入的了解. 本文旨在通过实验研究、密度泛函理论(DFT)计算和微动力学模拟相结合的方法, 捕捉活性位点在初始阶段的演变, 并将其与稳定阶段的催化剂结构进行比较.

本文通过沉积沉淀法制备了立方相In2O3纳米颗粒, 并评价了其催化二氧化碳加氢制备甲醇反应性能. 在反应开始的10 h内, 二氧化碳转化率逐渐升高, 甲醇选择性缓慢下降, 至20 h后达到平衡. 该催化剂的激活和诱导阶段存在In2O3纳米颗粒的烧结和在In2O3表面更多氧空位的生成. 进一步实验研究表明, 氢诱导使催化剂在活化阶段产生了额外的氧空位, 提高了In2O3催化剂的二氧化碳加氢性能. DFT计算和微观反应动力学模拟进一步表明, 在诱导期形成的氧空位覆盖率较高的表面或羟基化表面可以加快反应速率, 提高二氧化碳转化率. 然而, 它们主要促进一氧化碳生成而不是甲醇的形成, 因而导致甲醇选择性降低, 与实验结果一致.

综上, 本文深入探究了In2O3纳米催化剂上二氧化碳加氢过程的诱导阶段, 为显著提高In2O3基催化剂的二氧化碳反应活性并保持长期稳定性提供了有价值的见解.

关键词: 氧化铟, 二氧化碳加氢, 甲醇生产, 诱导和活化, 结构演化

Abstract:

As one of the most important industrially viable methods for carbon dioxide (CO2) utilization, methanol synthesis serves as a platform for production of green fuels and commodity chemicals. For sustainable methanol synthesis, In2O3 is an ideal catalyst and has garnered significant attention. Herein, cubic In2O3 nanoparticles were prepared via the precipitation method and evaluated for CO2 hydrogenation to produce methanol. During the initial 10 h of reaction, CO2 conversion gradually increased, accompanied by a slow decrease of methanol selectivity, and the reaction reached equilibrium after 10-20 h on stream. This activation and induction stage may be attributed to the sintering of In2O3 nanoparticles and the creation of more oxygen vacancies on In2O3 surfaces. Further experimental studies demonstrate that hydrogen induction created additional oxygen vacancies during the catalyst activation stage, enhancing the performance of In2O3 catalyst for CO2 hydrogenation. Density functional theory calculations and microkinetic simulations further demonstrated that surfaces with higher oxygen vacancy coverages or hydroxylated surfaces formed during this induction period can enhance the reaction rate and increase the CO2 conversion. However, they predominantly promote the formation of CO instead of methanol, leading to reduced methanol selectivity. These predictions align well with the above-mentioned experimental observations. Our work thus provides an in-depth analysis of the induction stage of the CO2 hydrogenation process on In2O3 nano-catalyst, and offers valuable insights for significantly improving the CO2 reactivity of In2O3-based catalysts while maintaining long-term stability.

Key words: In2O3, CO2 hydrogenation, Methanol production, Induction and activation, Structural evolution