催化学报 ›› 2025, Vol. 77: 184-198.DOI: 10.1016/S1872-2067(25)64763-2

• 论文 • 上一篇    下一篇

Co纳米颗粒调控Co-N的自旋极化驱动活化路径转化实现污染物高效氧化

张亮a, 芮家梁b, 李依倩b, 杨智智b, 久冨木志郎d, 王军虎e,*(), 张博凡b,c,*()   

  1. a江苏科技大学环境与化工学院, 江苏镇江212003, 中国
    b江苏大学环境与安全工程学院, 江苏镇江 212013, 中国
    c江苏大学应急管理学院, 江苏镇江 212013, 中国
    d东京都立大学化学系, 东京, 日本
    e中国科学院大连化学物理研究所, 应用催化重点实验室穆斯堡尔谱效应数据中心, 辽宁大连 116023, 中国
  • 收稿日期:2025-04-24 接受日期:2025-06-09 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: wangjh@dicp.ac.cn (王军虎),bfzhang@ujs.edu.cn (张博凡).
  • 基金资助:
    国家自然科学基金(52300045);国家自然科学基金(W2412116);国家自然科学基金(22350410386);国家自然科学基金(22375200);国家自然科学基金(U22A20394);江苏省自然科学基金(BK20241025);中国博士后基金(2023M741424);江苏大学高级人才启动基金(5501370025);中国科学院国际伙伴计划(028GJHZ2023097GC)

Engineering spin polarization of encaging Co nanoparticles in atomic CoNx sites evoke high valent Co species for boosting organic compound oxidation

Liang Zhanga, Jialiang Ruib, Yiqian Lib, Zhizhi Yangb, Shiro Kubukid, Junhu Wange,*(), Bofan Zhangb,c,*()   

  1. aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
    bSchool of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    cSchool of Emergency Management, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    dDepartment of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
    eMössbauer Effect Data Center, CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2025-04-24 Accepted:2025-06-09 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: wangjh@dicp.ac.cn (J. Wang), bfzhang@ujs.edu.cn (B. Zhang).
  • Supported by:
    National Natural Science Foundation of China(52300045);National Natural Science Foundation of China(W2412116);National Natural Science Foundation of China(22350410386);National Natural Science Foundation of China(22375200);National Natural Science Foundation of China(U22A20394);Jiangsu Province Natural Science Fund(BK20241025);China Postdoctoral Science Foundation(2023M741424);Start-up Fund for Introduced Scholar of Jiangsu University(5501370025);International Partnership Program of the Chinese Academy of Sciences(028GJHZ2023097GC)

摘要:

新兴有机污染物因其环境持久性及潜在的生物富集性, 已成为当前环境治理领域亟待解决的核心难题. 高级氧化技术(AOPs)凭借其生成高反应活性的自由基和非自由基型活性氧物种(ROS), 被广泛认为是去除此类难降解污染物的先进手段. 近年来, 单原子催化剂凭借其高度可控的d带电子结构展现出优异的催化潜力. 然而, 目前关于金属间强相互作用(如单原子-团簇协同)的电子结构调控机制仍缺乏深入的研究, 尤其是金属d轨道电子构型与ROS演化路径之间的构效关系, 尚缺乏明确的结构描述符和理论支撑. 因此, 本文通过构建金属颗粒与单原子位点间的协同耦合结构, 调控其自旋极化行为, 以实现对ROS演化路径的精准调控, 最终高效降解有机污染物.

本研究构筑了具有限域效应与壳层曲率的调控的钴纳米颗粒/钴单原子共存的催化氧化体系. 通过调变钴-氮共掺杂碳壳层(Co-NC)的曲率, 诱导催化剂中磁各向异性、自旋轨道耦合效应以及电子能级结构的变化, 从而显著增强了钴活性位点的自旋极化强度与自旋传输效率. 高自旋极化单原子钴位点促进了过硫酸盐(PMS)的高效吸附, 并形成稳定的双齿配位中间体, 有利于高价态CoIV=O物种的生成. 自旋极化同时降低了晶体场分裂能, 提升了电子自旋密度, 加速了钴原子的d轨道向PMS分子中氧原子pz轨道的电子转移过程. 限域包覆结构不仅有效稳定了钴纳米颗粒, 抑制其在反应过程中的溶出与失活, 还提高了活性位点的暴露度, 在壳层内形成瞬时富集的高浓度CoIV=O物种, 从而强化其与污染物之间的界面作用, 实现对高氧化电位有机污染物的高效选择性氧化. 同时, 构建的连续流反应装置也赋予了该体系优异的循环稳定性与耐久性.

综上, 本工作强调了限域壳层曲率调控与金属位点自旋极化特性在催化氧化路径调控与催化性能提升中的关键作用, 进一步揭示了不同自旋构型下电子分布对PMS活化机制的影响, 为环境催化领域中“自旋工程”的原理深化与应用拓展提供了新思路.

关键词: 自旋态交叉, 自旋极化, 限域微结构, 氧化路径调控, 类芬顿反应

Abstract:

Precise manipulation of the catalytic spin configuration and delineation of the relationship between spin related properties and oxidation pathways remain significant challenges in Fenton-like processes. Herein, encapsulated cobalt nanoparticles and cobalt-nitrogen-doped carbon moieties, endowed with confinement effects and variations in shell curvature were constructed via straightforward pyrolysis strategies, inducing alterations in magnetic anisotropy, electronic energy levels and spin polarization. The enhanced spin polarization at cobalt sites leads to a reduction in crystal field splitting energy and an increase in electronic spin density. This phenomenon facilitated electron transfer from cobalt orbitals to pz orbitals of oxygen species within peroxymonosulfate molecules, thereby promoting the formation of high-valent cobalt species. The encapsulation effectively stabilized cobalt nanoparticles, mitigating their dissolution or deactivation during reactions, which in turn enhances stability and durability in continuous flow processes. The high-valent cobalt species within the shell exhibit increased exposure and generate localized high concentrations, thereby intensifying interactions with migrating pollutants and enabling efficient and selective oxidation of emerging compounds with elevated redox potentials. This work underscores the profound impact of confined encapsulation curvature and spin polarization characteristics of metal sites on catalytic oxidation pathways and performance, opening novel avenues for spin engineering in practical environmental catalysis.

Key words: Spin crossover, Spin polarization, Confined microstructure, Oxidation pathway modulation, Fenton-like reaction