催化学报 ›› 2025, Vol. 73: 62-78.DOI: 10.1016/S1872-2067(25)64689-4
吴剑峰a,b,1(), 梁丽烨a,b,1, 车政b,1, 苗宇婷b, 丑凌军a(
)
收稿日期:
2024-12-28
接受日期:
2025-03-07
出版日期:
2025-06-18
发布日期:
2025-06-12
通讯作者:
*电子信箱: wjf@licp.cas.cn (吴剑峰),ljchou@licp.cas.cn (丑凌军).
作者简介:
1共同第一作者.
基金资助:
Jian-Feng Wua,b,1(), Li-Ye Lianga,b,1, Zheng Cheb,1, Yu-Ting Miaob, Lingjun Choua(
)
Received:
2024-12-28
Accepted:
2025-03-07
Online:
2025-06-18
Published:
2025-06-12
Contact:
*E-mail: wjf@licp.cas.cn (J.-F. Wu),ljchou@licp.cas.cn (L. Chou).
About author:
Jian-Feng Wu, PhD, is an Associate Research Fellow at the State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. He obtained his B.A. degree in 2008 and Ph.D. degree in 2014 from Lanzhou University, China. Following this, he conducted postdoctoral research at the Center for Environmentally Beneficial Catalysis at the University of Kansas, USA, from 2014 to 2017. Wu has held positions at the School of Chemistry and Chemical Engineering, Lanzhou University (2017-2023), and currently at the State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (since 2023). He was recognized as a beneficiary of the key talent program in Gansu Province in 2024 and the talent introduction program of the Chinese Academy of Sciences in 2025. His research primarily focuses on low carbon catalysis, encompassing CO2 hydrogenation to methanol and methane conversion to CH3OH, CH3COOH, and HCOOH.Supported by:
摘要:
随着化石能源消耗加剧及CO2过量排放所导致的全球气候危机日益严重, CO2催化加氢制甲醇作为实现碳循环经济的关键路径备受关注. 传统铜基催化剂(Cu/ZnO/Al2O3)受限于水诱导失活及甲醇选择性不足等问题, 难以满足工业化需求. 双金属氧化物催化剂凭借其优异的协同效应、可调控活性位点及优异稳定性成为突破瓶颈的新方向. 尽管双金属氧化物催化剂相较传统铜基催化剂具有明显优势, 但仍面临活性和成本等挑战. 本文系统综述了2015-2024年之间双金属氧化物催化剂的研究进展, 重点探讨催化剂分类、制备方法、构效关系、反应机理及工业化潜力,旨在为高性能催化剂开发提供理论支撑.
本文系统总结了双金属氧化物在CO2加氢制备甲醇领域的研究进展. 首先, 阐述了双金属氧化物催化剂的分类体系, 主要包括: (1) Co基氧化物催化剂(如MnOx/Co3O4), 通过界面协同作用提升CO2转化率, 但甲醇选择性较低(~30%), 需通过硅基载体限域或表面改性抑制C-O断裂; (2) In基氧化物催化剂(如In2O3/ZrO2), 依托氧空位高效活化CO2和H2、稳定反应中间体, 甲醇选择性达77.3%-99.8%, 单程转化率最高达17.6%, 且千小时稳定性优异, 但水诱导氧空位消耗及铟团聚问题亟待解决; (3) MaZrOx (Ma = Zn, Ga等)固溶体催化剂, 通过Zr与M之间的协同效应和M-O键的极化促进H2异裂解离, 其中GaZrOx催化剂时空产率达760 gCH3OH+DME kgcat-1 h-1. 然后, 探讨了影响催化性能的关键因素: 晶体结构(调控表面酸碱性、活性组分分散度和载体-活性组分相互作用等)、助剂(调控活化CO2和H2的能力和反应中间体的吸附性能等)和催化剂制备方法(调控催化剂结构特性、传质和活性位点可接近性等). 其后, 进一步对比了几种催化剂的合成成本(需开发低In、Ga含量体系)以及稳定性(需工业化条件验证). 最后, 总结了双金属氧化物的催化机理. 甲酸盐路径被广泛认为是主要途径, 其中HCOO*和CH3O*为关键中间体, 氧空位与金属-载体界面(如In-VO-Zr)协同促进CO2吸附与HCOO*中间体氢化, 而RWGS路径可通过调控表面酸碱性选择性抑制.
尽管取得显著进展, 该领域仍存在亟待突破的瓶颈: (1) 现有体系低温活性不足; (2)催化剂组成局限, 新型双金属组合开发滞后; (3) ZrO2基固溶体的构效关系缺乏理论计算支撑等. 未来研究应聚焦于: 提高现有双金属氧化物催化剂的性能, 创建新型催化体系, 对双金属协同作用、活性位点结构、催化反应路径和动力学过程进行广泛的理论研究.
吴剑峰, 梁丽烨, 车政, 苗宇婷, 丑凌军. 双金属氧化物催化CO2加氢制备甲醇: 最新进展和挑战[J]. 催化学报, 2025, 73: 62-78.
Jian-Feng Wu, Li-Ye Liang, Zheng Che, Yu-Ting Miao, Lingjun Chou. Bimetallic oxide catalysts for CO2 hydrogenation to methanol: Recent advances and challenges[J]. Chinese Journal of Catalysis, 2025, 73: 62-78.
Catalyst | Preparation method | nH2/nCO2 | T (K) | P (MPa) | GHSV a mL gcat‒1 h‒1 | CO2 Conv. (%) | Methanol Sel. (%) | STY b gMeOH kgcat‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
ZnO-ZrO2 | co-precipitation | 3/1 | 593 | 5 | 24000 | 10 | 86 | 737 | [ |
3/1 | 573 | 2 | 24000 | 3.4 | 87 | 250 | [ | ||
ZnO-ZrO2 | EISAc | 3/1 | 593 | 2 | 24000 | 6.4 | 78.5 | 413 | [ |
ZnO/t-ZrO2 | microreaction | 3/1 | 593 | 3 | 12000 | 9.2 | 93.1 | 350 | [ |
ZnOx/ZrO2-600 | impregnation | 3/1 | 573 | 2 | 9000 | 5.5 | 75.1 | 106 | [ |
ZnZrOx | flame spray pyrolysis | 4/1 | 593 | 5 | 24000 | 8.7 | 78.3 | 460 | [ |
ZnZrOx | reflux ammonia | 6/1 | 563 | 5 | 24000 | 8.4 | 95.6 | 377 | [ |
Pd/CNT+ZnZrOx | mechanical mixed | 4/1 | 593 | 5 | 24000 | 18.1 | 66.3 | 900 | [ |
CdZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 5.5 | 80 | — | [ |
GaZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 2.4 | 75 | — | [ |
GaZrOx | EISAc | 3/1 | 603 | 4 | 24000 | 10.8 | 72.9e | 760f | [ |
ZnO-ZrO2 (UiO-66) | thermal pyrolysis | 3/1 | 593 | 3 | 18000 | 5.7 | 70 | — | [ |
ZnO-ZrO2 (MOF-808) | postsynthetic treatment | 3/1 | 523 | 4 | 9000d | 2.1 | >99 | 30.4 | [ |
h-In2O3(104) | hydrothermal | 6/1 | 573 | 5 | 9000 | 17.6 | 92.4 | 288 | [ |
In2O3/ZrO2 | impregnation | 4/1 | 573 | 5 | 16000d | 5.2 | 99.8 | 295 | [ |
In2O3/ZrO2 | hydrothermal | 3/1 | 573 | 3 | 12000d | 8.83 | 77.3 | 269 | [ |
20MnOx-Co3O4 | sol-gel | 3/1 | 523 | 1 | 88800d | — | 30 | — | [ |
Ga-ZnZrOx | co-precipitation | 3/1 | 593 | 5 | 24000 | 8.8 | 87.5 | 630 | [ |
Table 1 Catalytic performance of selected bimetallic oxide catalysts.
Catalyst | Preparation method | nH2/nCO2 | T (K) | P (MPa) | GHSV a mL gcat‒1 h‒1 | CO2 Conv. (%) | Methanol Sel. (%) | STY b gMeOH kgcat‒1 h‒1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
ZnO-ZrO2 | co-precipitation | 3/1 | 593 | 5 | 24000 | 10 | 86 | 737 | [ |
3/1 | 573 | 2 | 24000 | 3.4 | 87 | 250 | [ | ||
ZnO-ZrO2 | EISAc | 3/1 | 593 | 2 | 24000 | 6.4 | 78.5 | 413 | [ |
ZnO/t-ZrO2 | microreaction | 3/1 | 593 | 3 | 12000 | 9.2 | 93.1 | 350 | [ |
ZnOx/ZrO2-600 | impregnation | 3/1 | 573 | 2 | 9000 | 5.5 | 75.1 | 106 | [ |
ZnZrOx | flame spray pyrolysis | 4/1 | 593 | 5 | 24000 | 8.7 | 78.3 | 460 | [ |
ZnZrOx | reflux ammonia | 6/1 | 563 | 5 | 24000 | 8.4 | 95.6 | 377 | [ |
Pd/CNT+ZnZrOx | mechanical mixed | 4/1 | 593 | 5 | 24000 | 18.1 | 66.3 | 900 | [ |
CdZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 5.5 | 80 | — | [ |
GaZrOx | co-precipitation | 3/1 | 573 | 2 | 24000d | 2.4 | 75 | — | [ |
GaZrOx | EISAc | 3/1 | 603 | 4 | 24000 | 10.8 | 72.9e | 760f | [ |
ZnO-ZrO2 (UiO-66) | thermal pyrolysis | 3/1 | 593 | 3 | 18000 | 5.7 | 70 | — | [ |
ZnO-ZrO2 (MOF-808) | postsynthetic treatment | 3/1 | 523 | 4 | 9000d | 2.1 | >99 | 30.4 | [ |
h-In2O3(104) | hydrothermal | 6/1 | 573 | 5 | 9000 | 17.6 | 92.4 | 288 | [ |
In2O3/ZrO2 | impregnation | 4/1 | 573 | 5 | 16000d | 5.2 | 99.8 | 295 | [ |
In2O3/ZrO2 | hydrothermal | 3/1 | 573 | 3 | 12000d | 8.83 | 77.3 | 269 | [ |
20MnOx-Co3O4 | sol-gel | 3/1 | 523 | 1 | 88800d | — | 30 | — | [ |
Ga-ZnZrOx | co-precipitation | 3/1 | 593 | 5 | 24000 | 8.8 | 87.5 | 630 | [ |
Fig. 2. The catalytic performance of MnOx/m-Co3O4, MnOx/m-SiO2, and m-Co3O4 catalysts. (a) Turnover frequency of these catalysts. (b) Yield of these catalysts towards ethylene, methanol, and DME [52].
Fig. 4. The structural characterization of the ZnO-ZrO2 catalyst. (A) HRTEM image; (B) phase-corrected STEM-HAADF image and elemental distribution; (C) ZnO-ZrO2 solid-solution structure [36].
Catalyst type | Price range ($ kg−1) |
---|---|
Cu/ZnO/Al2O3 | ~80 to ~200 |
ZnO-ZrO2 | ~130 to ~275 |
GaZrOx | ~230 to ~400 |
In2O3/ZrO2 | ~300 to ~600 |
Table 2 Estimated prices of several CO2 hydrogenation catalysts a.
Catalyst type | Price range ($ kg−1) |
---|---|
Cu/ZnO/Al2O3 | ~80 to ~200 |
ZnO-ZrO2 | ~130 to ~275 |
GaZrOx | ~230 to ~400 |
In2O3/ZrO2 | ~300 to ~600 |
|
[1] | 庹杰, 盛振腾, 龚贤晨, 杨琪, 吴鹏, 徐浩. ZnCeZrOx/MCM-22择形催化二氧化碳加氢耦合甲苯甲基化反应[J]. 催化学报, 2025, 73(6): 174-185. |
[2] | 胡晓春, 陶龙刚, 雷坤, 孙志强, 谭明务. 揭示TiO2相效应对Pt单原子催化剂高效CO2转化的影响[J]. 催化学报, 2025, 73(6): 186-195. |
[3] | 肖佩佩, 王勇, 唐晓敏, 郑安民, Trees De Baerdemaeker, Andrei-Nicolae Parvulescu, Dirk De Vos, 孟祥举, 肖丰收, Hermann Gies, 横井俊之. 有机结构导向剂的异构体影响AEI沸石中铝的分布及其在甲烷氧化中的催化性能[J]. 催化学报, 2025, 73(6): 252-260. |
[4] | 石德志, 陈艳艳, 陈晓, 王森, 王强, 王鹏飞, 朱华青, 董梅, 徐君, 邓风, 王建国, 樊卫斌. [Ga(OH)]2+负载介孔中空结构H-ZSM-5: 一种高效低碳烷烃芳构化催化剂[J]. 催化学报, 2025, 72(5): 359-375. |
[5] | 詹钰捷, 钟承钦, 毕明莉, 梁亚飞, 祁玉基, 陈家琪, 刘家旭, 张新党, 张帅, 王业红, 王峰. 催化甲醇选择性氧化制甲醛的铁钒催化剂活性位点的识别[J]. 催化学报, 2025, 72(5): 334-343. |
[6] | 蔚张茜, 王明秀, 路昕楠, 周紫璇, 唐梓祁, 常春然, 杨永, 李圣刚, 高鹏. CO2加氢反应诱导过程中In2O3催化剂结构演变的实验和理论研究[J]. 催化学报, 2025, 72(5): 301-313. |
[7] | 张亚楠, 张雯娜, 张成伟, 何林海, 林杉帆, 徐舒涛, 魏迎旭, 刘中民. C1物种在甲醇制烃类反应过程中的作用: 超越反应物角色[J]. 催化学报, 2025, 71(4): 169-178. |
[8] | 李显泉, 庞纪峰, 赵于嘉, 李林, 于文广, 徐斐斐, 苏扬, 杨小峰, 罗文豪, 郑明远. 乙醇乙醛催化转化制丁二烯的双分子协同吸附机制研究[J]. 催化学报, 2025, 71(4): 297-307. |
[9] | 王一潮, 张磊磊, 潘晓丽, 王爱琴, 张涛. 碳化铁催化氢气气氛下苯甲醇脱氧偶联制备联苄类化学品[J]. 催化学报, 2025, 71(4): 179-186. |
[10] | 陈瑶, 戈钧. 固定化催化剂合成5-羟甲基糠醛及其氧化衍生物: 高效的绿色可持续技术[J]. 催化学报, 2025, 71(4): 5-24. |
[11] | 梁昊, 张书南, 张若楠, 周浩志, 夏林, 孙予罕, 王慧. FeTi强相互作用促进CO2高效加氢制低碳烯烃[J]. 催化学报, 2025, 71(4): 146-157. |
[12] | 蔡子国, 于学峰, 王鹏龙, 吴慧芳, 种瑞峰, 任利敏, 胡涛, 王翔. CO2加氢制甲醇Cu/ZnO/Y2O3催化剂中Y2O3的作用[J]. 催化学报, 2025, 70(3): 410-419. |
[13] | 班涛, 王建伟, 余希阳, 田海阔, 高新, 黄正清, 常春然. 机器学习辅助筛选SA-FLP双活性位催化剂用于甲烷与水共转化制甲醇反应[J]. 催化学报, 2025, 70(3): 311-321. |
[14] | 李爽, 林海莉, 贾雪梅, 金昕, 汪钱龙, 李馨悦, 陈士夫, 曹静. 双金属NixFe2−xP修饰的RP用于增强光催化苯甲醇氧化耦合产H2[J]. 催化学报, 2025, 70(3): 363-377. |
[15] | 李兴娟, 郭昱昊, 管勤辉, 李晓, 张璐璐, 冉维广, 李娜, 颜廷江. 高密度Au-OV协同位点促进串联光催化CO2加氢制CH3OH[J]. 催化学报, 2025, 69(2): 303-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||