催化学报 ›› 2025, Vol. 71: 5-24.DOI: 10.1016/S1872-2067(24)60274-3

• 综述 • 上一篇    下一篇

固定化催化剂合成5-羟甲基糠醛及其氧化衍生物: 高效的绿色可持续技术

陈瑶a, 戈钧a,b,c,*()   

  1. a清华大学化工系, 工业生物催化教育部重点实验室, 北京 100084
    b绿色生物制造全国重点实验室, 北京 100084
    c清华大学合成与系统生物学中心, 北京 100084
  • 收稿日期:2024-11-05 接受日期:2025-01-20 出版日期:2025-04-18 发布日期:2025-04-13
  • 通讯作者: * 电子信箱: junge@mail.tsinghua.edu.cn (戈钧).
  • 基金资助:
    北京市自然科学基金(L212019);国家重点研发计划(2023YFA0913600);国家自然科学基金杰出青年科学基金(22425803);深圳市科技计划(KCXFZ20240903093102004);清华大学自主科研计划(2023Z02ORD001);北京市自然科学基金(2254074)

Synthesis of 5-hydroxymethylfurfural and its oxidation derivatives by immobilized catalysts: An efficient green sustainable technology

Yao Chena, Jun Gea,b,c,*()   

  1. aKey Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    bState Key Laboratory of Green Biomanufacturing, Beijing 100084, China
    cCenter for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
  • Received:2024-11-05 Accepted:2025-01-20 Online:2025-04-18 Published:2025-04-13
  • Contact: * E-mail: junge@mail.tsinghua.edu.cn (J. Ge).
  • About author:Dr. Jun Ge is a professor at Department of Chemical Engineering Tsinghua University. He received his B.Sc. and Ph.D. from the Department of Chemical Engineering, Tsinghua University in 2004 and 2009. From 2009 to 2012, He did his postdoc in the Department of Chemistry, Stanford University. Prof. Ge specializes in enzymatic catalysis, synthetic biology, nanobiotechnology and biomedicine. He has been carrying out scientific research projects from government and industry, including the Distinguished Young Scholars Fund from NSFC, the Excellent Young Scientists Fund from NSFC, the Program of National Key Research and Development Plan of China, and the Distinguished Young Scholars of Beijing National Science Foundation. Prof. Ge has published over 100 papers in journals such as Nature Nanotechnology, Nature Catalysis, Nature Communications, Science Advances, JACS etc. He was selected as the member of MIT Technology Review’s World 35 Innovators Under 35 and was awarded as the young scholar of Yangzi River Scholarship and the Future Chemical Engineering Scholar of the Global Academy of Chinese Chemical Engineers.
  • Supported by:
    Beijing Natural Science Foundation(L212019);National Key R&D Program of China(2023YFA0913600);National Science Fund for Distinguished Young Scholars of China(22425803);Shenzhen Science and Technology Program(KCXFZ20240903093102004);Tsinghua University Initiative Research Program(2023Z02ORD001);Beijing Natural Science Foundation(2254074)

摘要:

5-羟甲基糠醛(HMF)及其氧化衍生物已被公认为是连接生物质资源和未来能源行业的桥梁. 这些宝贵的可再生生物质资源可以转化为许多高附加值的化学品, 能够有效解决化石资源日益减少和环境污染等问题. 固定化催化剂技术作为一种绿色高效合成HMF及其氧化衍生物的策略, 不仅可以提高产物的产率和选择性, 还可以通过设计载体来调控固定化催化剂的催化性能. 本文综述了近年来固定化催化剂在HMF及其氧化衍生物合成中的应用, 重点探讨了不同固定化催化剂的制备方法及其催化性能. 通过系统全面的介绍, 本文作为固定化催化剂技术在HMF及其氧化衍生物的合成提供了新思路.
本文从固定化酶、细胞和化学催化剂三方面展开, 分析了不同类型固定化技术在合成HMF及其氧化衍生物中的应用. 针对温度和pH值的波动导致酶和细胞的失活, 可重复使用性较差以及难以与反应体系分离的问题, 总结了不同载体结构包括水凝胶、碳基材料、硅基材料、共价有机框架和金属有机框架(MOF)等对酶的固定化方法, 考察这些固定化酶在HMF及其氧化衍生物中的催化效率、选择性和重复使用性能, 并总结了不同固定化方法的制备条件及催化反应条件, 并对重复使用性降低的原因进行了分析. 介绍了固定化细胞在HMF及其氧化衍生物合成中的应用, 由于细胞的特殊性, 常采用壳聚糖、海藻酸钙等生物相容性较好的物质作为固定化载体, 并分析了这些固定化细胞的催化效率以及重复使用性能. 化学催化剂金属纳米颗粒的聚集会降低其催化活性, 将金属纳米颗粒固定在多孔材料中, 通过相互作用和空间限制效应促进了其稳定, 从而防止催化剂制备和催化过程中的聚集. 介绍了多种载体, 如传统沸石咪唑, 二氧化硅, MOF载体, 聚合物载体固定化学催化剂用于合成HMF及其氧化衍生物方面的催化效率、选择性以及重复使用性能, 并对不同固定化化学催化剂的制备方法进行了描述. 最后, 展望了固定化催化剂未来的发展方向, 包括高性能固定化催化剂的制备、固定化催化剂的制备和催化机理等.
综上, 本文综述了固定化催化剂在HMF及其氧化衍生物合成中的应用, 阐述了多种体系的固定化方法及催化性能, 为绿色可持续的催化技术在生物质资源应用方面提供了参考.

关键词: 5-羟甲基糠醛, 氧化衍生物, 固定化, 固定化催化剂, 催化性能

Abstract:

5-Hydroxymethylfurfural (HMF) and its oxidation derivatives have emerged as a bridge between biomass resources and the future energy industry. These renewable biomass resources can be transformed into a variety of value-added chemicals, thereby addressing the challenges posed by diminishing fossil fuel reserves and environmental concerns. The immobilization of catalysts represents an innovative method for the sustainable and efficient synthesis of HMF and its oxidation derivatives. This method not only enhances the yield and selectivity of the products but also allows for the optimization of the catalytic performance of immobilized catalysts through the strategic design of their supports. In this review, we provide an overview of the recent advancements in the technology of immobilized catalyst and its application in the synthesis of HMF and its oxidation derivatives, with a particular focus on the preparation and catalytic characteristics of these immobilized catalysts. Furthermore, we discuss potential future directions for the development of immobilized catalysts, including the preparation of high-performance immobilized catalysts, the exploration of their growth and catalytic mechanisms, and the economic implications of raw material utilization. This area of research presents both significant promise and considerable challenges.

Key words: 5-Hydroxymethylfurfural, Oxidized derivatives, Immobilization, Immobilized catalyst, Catalytic property