催化学报 ›› 2024, Vol. 60: 128-157.DOI: 10.1016/S1872-2067(24)60016-1
王长安a, 欧阳颖b, 罗一斌b,*(), 高心茹a, 高鸿毅a,c,*(
), 王戈a,d,*(
), 舒兴田b,*(
)
收稿日期:
2024-01-16
接受日期:
2024-02-27
出版日期:
2024-05-18
发布日期:
2024-05-20
通讯作者:
电子信箱: 基金资助:
Chang’an Wanga, Ying Ouyangb, Yibin Luob,*(), Xinru Gaoa, Hongyi Gaoa,c,*(
), Ge Wanga,d,*(
), Xingtian Shub,*(
)
Received:
2024-01-16
Accepted:
2024-02-27
Online:
2024-05-18
Published:
2024-05-20
Contact:
E-mail: About author:
Yibin Luo is a professor at Research Institute of Petroleum Processing, SINOPEC. Dr. Luo has more than 30 yr of experience on zeolite synthesis and industrial applications in both petroleum refining and chemical production. He led the team to develop various series of zeolites, which were formulated into nearly 200,000 tons/year of catalysts used in catalytic cracking units. He has been granted 46 Chinese invention patents and published more than 30 peer‐reviewed papers.Supported by:
摘要:
催化过程在化工生产中起着至关重要的作用, 开发高性能催化材料是提升催化效率的有效策略之一. 然而, 多数催化过程伴随的强烈放热或吸热效应往往影响材料的催化效率, 甚至可能导致失活. 近年来, 相变储热材料(PCMs)因具有较好的热管理和能量存储性能, 在热催化、光催化、生物催化和电化学领域展现出广阔的应用潜力. 将PCMs与催化材料相结合, 形成PCMs@Catalysts复合材料, 可以提升能源利用效率和强化催化反应过程. 利用微胶囊技术, 可以实现这种复合材料的储热区及催化区的分区组装及功能集成, 其中催化材料壳层不仅增强了PCMs热导率和稳定性, 还能够有效防止PCMs相变过程的泄漏. 同时, PCMs芯材通过吸收/释放反应过程的热量和控制壳层催化材料的温度达到提升催化效率的目的. 本综述旨在深入介绍相变材料在强化催化反应方面的最新进展, 并为PCMs@Catalysts复合材料的理性设计和可控制备提出见解.
本文系统地总结了PCMs@Catalysts复合材料的制备方法及其在热催化、光催化、生物催化和电化学领域的应用进展. PCMs@Catalysts的制备方法主要包括物理法和化学法. 物理法, 如喷雾干燥法和空气悬浮法, 主要通过物理手段将外壳溶液均匀地包覆在PCMs内核表面, 形成厚度适中的外壳. 而化学法, 如原位聚合法、原位沉淀法、悬浮聚合法、诱导氧化法和溶胶-凝胶法等, 则通过在PCMs表面原位生长致密的氧化物壳层来实现复合材料的构筑. 在应用方面, PCMs组分提升催化反应性能的作用机制主要包括以下三种. (1) 自蓄热驱动催化效应: PCMs材料在催化反应中高效储存来自环境余热或太阳能等外界热源的热能, 并在移除热源后持续稳定地释放潜热以驱动催化反应的进行. (2)原位温度调节效应: 由PCMs芯材存储反应过程中的热量以调节催化材料壳层微环境温度, 进而调控催化剂床层温度, 防止催化过程热失控并延长催化剂使用寿命. (3)热流/电子协同效应: PCMs释放的热流能够加速催化材料表面底物分子的热运动和光生电子/空穴的迁移, 进而克服反应物转化的能量势垒; 热流和光生电荷的协同效应有助于提高太阳能的利用率和反应物的转化率.
综上, 本文系统地总结了PCMs@Catalysts复合材料的合成制备方法、协同作用机制及其在不同催化领域的应用进展. 展望未来, PCMs@Catalysts复合材料研究应在保证其综合力学性能的基础上, 进一步提高催化性能和储/放热效率. 本文旨在为PCMs@Catalysts的理性设计和精准构筑提供参考, 也为其在工业领域的规模化应用提供借鉴.
王长安, 欧阳颖, 罗一斌, 高心茹, 高鸿毅, 王戈, 舒兴田. 相变储热材料强化催化反应过程的研究进展[J]. 催化学报, 2024, 60: 128-157.
Chang’an Wang, Ying Ouyang, Yibin Luo, Xinru Gao, Hongyi Gao, Ge Wang, Xingtian Shu. Review on recent advances in phase change materials for enhancing the catalytic process[J]. Chinese Journal of Catalysis, 2024, 60: 128-157.
PCMs@ Catalysts | Synthesis method | Shell layer | PCMs core | Catalyst | Melting/ Freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ni/Al2O3/NaCl Ni/ZrO2/ Na2CO3 | impregnation method + melt impregnation method | Ni + Al2O3 Ni + ZrO2 | NaCl Na2CO3 | Ni | —/220 | — | — | solar thermochemical reforming of methane | [67] |
Ni/MEPCM | boehmite treatment + precipitation treatment + thermal oxidation treatment | NiO + α-Al2O3 | Al-Si | NiO | 177.84/— | 573.43/— | — | CO2 methanation | [71] |
(Fe2O3/Al2O3)/ (Al@Al2O3) | thermal oxidation + gelation method | Fe2O3/Al2O3 | Al@Al2O3 | Fe2O3 | ~180/~185 | ~660/~610 | — | unsteady-state chemical reaction | [73] |
Co3O4/ (SiAl@Al2O3) | induced oxidation method+ Co-precipitation method | Co3O4 + α-Al2O3 | Al-Si | Co3O4 | ~100/~80 | 577/550 | — | methane combustion | [45] |
Al@Al2O3-C | induced oxidation method + in-situ decomposition method | Al2O3 + Ni + C | Al | — | 267.6/266.3 | 660.3/628.3 | — | high-temperature catalysis industry | [61] |
α-Al2O3@Al-Si | boehmite treatment + thermal oxidation method | α-Al2O3 | Al-Si | — | 247/— | 573/— | 57 | S-IGFC, A-IGCC and A-IGFC | [60] |
MEPCMs | ultrasonic polymerization + self-assembly method + solution combustion synthesis | CaCO3-PMMA | Sn | Ce, Mn | 56.31/51.21 | 231.8/154.8 | 77.3 | industrial denitrification/desulphurisation | [59] |
SiO2/poly(EGDMA-co-MAA)@n-eicosane | emulsion-template interfacial condensation method + surface free-radical polymerization | SiO2 + poly(EGDMA-co-MAA) | n-eicosane | recognition sites | 165.3/164.1 | ~37/~29 | 63.4 | adsorption of BPA | [81] |
Pt/ SiO2 In@SiO2 paraffin@SiO2 | sol-gel method + impregnation method | SiO2 | In or paraffin | Pt | 160 (Encapsulated paraffin)/ —— | — | ~80 (encapsulated paraffin) | methanol oxidation, MMA polymerization | [30] |
SiO2@n-octadecane | sol-gel method | SiO2 | n-octadecane | — | 129.1/121.3 | 27.23/24.37 | 54.5 | esterification of propionic anhydride and n-butanol | [82] |
Table 1 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in thermal catalysis fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCMs core | Catalyst | Melting/ Freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ni/Al2O3/NaCl Ni/ZrO2/ Na2CO3 | impregnation method + melt impregnation method | Ni + Al2O3 Ni + ZrO2 | NaCl Na2CO3 | Ni | —/220 | — | — | solar thermochemical reforming of methane | [67] |
Ni/MEPCM | boehmite treatment + precipitation treatment + thermal oxidation treatment | NiO + α-Al2O3 | Al-Si | NiO | 177.84/— | 573.43/— | — | CO2 methanation | [71] |
(Fe2O3/Al2O3)/ (Al@Al2O3) | thermal oxidation + gelation method | Fe2O3/Al2O3 | Al@Al2O3 | Fe2O3 | ~180/~185 | ~660/~610 | — | unsteady-state chemical reaction | [73] |
Co3O4/ (SiAl@Al2O3) | induced oxidation method+ Co-precipitation method | Co3O4 + α-Al2O3 | Al-Si | Co3O4 | ~100/~80 | 577/550 | — | methane combustion | [45] |
Al@Al2O3-C | induced oxidation method + in-situ decomposition method | Al2O3 + Ni + C | Al | — | 267.6/266.3 | 660.3/628.3 | — | high-temperature catalysis industry | [61] |
α-Al2O3@Al-Si | boehmite treatment + thermal oxidation method | α-Al2O3 | Al-Si | — | 247/— | 573/— | 57 | S-IGFC, A-IGCC and A-IGFC | [60] |
MEPCMs | ultrasonic polymerization + self-assembly method + solution combustion synthesis | CaCO3-PMMA | Sn | Ce, Mn | 56.31/51.21 | 231.8/154.8 | 77.3 | industrial denitrification/desulphurisation | [59] |
SiO2/poly(EGDMA-co-MAA)@n-eicosane | emulsion-template interfacial condensation method + surface free-radical polymerization | SiO2 + poly(EGDMA-co-MAA) | n-eicosane | recognition sites | 165.3/164.1 | ~37/~29 | 63.4 | adsorption of BPA | [81] |
Pt/ SiO2 In@SiO2 paraffin@SiO2 | sol-gel method + impregnation method | SiO2 | In or paraffin | Pt | 160 (Encapsulated paraffin)/ —— | — | ~80 (encapsulated paraffin) | methanol oxidation, MMA polymerization | [30] |
SiO2@n-octadecane | sol-gel method | SiO2 | n-octadecane | — | 129.1/121.3 | 27.23/24.37 | 54.5 | esterification of propionic anhydride and n-butanol | [82] |
Fig. 5. (A) Mechanism of in-situ temperature regulation in catalyst-loaded MEPCMs. (B) Temperature programs of the Ni/MEPCM catalyst with/without the heat storage function during the CO2 methanation reaction. Reprinted with permission from Ref. [71]. Copyright 2021, Springer Nature.
Fig. 6. (A) Synthesis schematic of (Fe2O3/Al2O3)/(Al@Al2O3) OCs. (B) Application of thermal storage functional catalysts for chemical energy. Reprinted with permission from Ref. [73]. Copyright 2017, Royal Society of Chemistry. (C) The preparation of the encapsulated Co3O4/(SiAl@Al2O3) thermal storage functional catalysts. Reprinted with permission from Ref. [45]. Copyright 2020, Elsevier Ltd. (D) The process of the carbon formation on the surface of Al@Al2O3 from CH4 decomposition. Reprinted with permission from Ref. [61]. Copyright 2019, Elsevier B.V.
Fig. 7. (A) The transformation of boehmite shell during thermal oxidation treatment. (B) Expected applications of MEPCMs in S-IGFC, A-IGCC and A-IGFC. Reprinted with permission from Ref. [60]. Copyright 2015, Springer Nature.
PCMs@Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag-Paraffin @Halloysite | self-assembly method | Ag + Halloysite | paraffin | Ag | 150.58/ 136.42 | 61.82/57.93 | 87.4 | 4-nitrophenol reduction | [ |
TiO2/poly(4-MeS-co-DVB)@hexadecane | one-pot non-Pickering emulsion templated suspension polymerization method | TiO2 + [poly(4- ethylstyrene-co- divinylbenzene)] | hexadecane | TiO2 | 182.0±3/ 174.0±3 | 17.5±0.3/ — | 76.6 | methylene blue degradation | [ |
TiO2@ n-eicosane | sol-gel method + in-situ polycondensation | TiO2 | n-eicosane | TiO2 | 97.6/ 95.33 | 43.88/35.39 | 49.9 | methylene blue degradation | [ |
n-eicosane@ TiO2@graphene | interfacial polycondensation + surface self-assembly | graphene + TiO2 | paraffin | TiO2 | ~162/ ~160 | ~40/~33 | 65.59 | methyl blue degradation | [ |
ZnO@n-eicosane | in-situ precipitation method | ZnO | n-eicosane | ZnO | 50‒135/ 28‒133 | 38~40/ 29~31 | 35~70 | methylene blue degradation | [ |
ZnO/SiO2@ n-docosane | emulsion-templated interfacial condensation + structure-induced growth method | ZnO + SiO2 | n-docosane | ZnO | 139/~137 | ~44/~35 | ~60 | — | [ |
TiO2/poly(HDDA)@paraffin | microfluidic emulsification + on-the-fly photopolymerization | poly(1,6-hexanediol diacrylate) + TiO2 | paraffin | TiO2 | — | — | — | methylene blue degradation | [ |
paraffin@SiO2/ FeOOH | interfacial condensation method | FeOOH + SiO2 | paraffin | FeOOH | 104.44/ 101.69 | 26.1/25.49 | 49.68 | methylene blue degradation | [ |
TiO2@SnBi58 | ultrasonic polymerization + liquid-phase precipitation method | TiO2 | SnBi58 | TiO2 | 46.61/ 37.57 | 137.6/132.1 | — | methylene blue degradation | [ |
TiO2-polyurethane@butyl stearate | interfacial polymerization method | TiO2-polyurethane | butyl stearate | TiO2 | 16.75/— | 26/— | — | MO degradation | [ |
Cu2O@n-eicosane | emulsion template self-assembly method + in-situ precipitation | Cu2O | n-eicosane | Cu2O | 165.3/ 163.1 | 38.71/32.52 | 61.61 | degradation of malachite green, acid fuchsin, Congo red | [ |
SiO2/TiO2/PDA@n-eicosane | interfacial polycondensation method + sol-gel method | SiO2/TiO2/PDA | n-eicosane | TiO2 | ~125/ ~125 | ~43/~35 | — | RhB degradation | [ |
n-eicosane/TiO2-based microcapsules | emulsion-templated interfacial polycondensation method | TiO2 | n-eicosane | TiO2 | ~185/ ~180 | ~41.8/~30 | 75.9 | RhB degradation | [ |
PDVB/TiO2@ paraffin | pickering emulsion polymerization method | TiO2 + PDVB | paraffin | TiO2 | 139.1/ 140.8 | 26.6/23.5 | 78.9 | HCHO decomposition | [ |
D-P@Ce-Eu/ TiO2 | interfacial condensation + vacuum impregnation | Ce-Eu/TiO2 | DA-PA | Ce-Eu/ TiO2 | — | — | — | HCHO decomposition | [ |
PA-DA@ Ce-Eu/TiO2 | interfacial condensation + vacuum impregnation method | Ce-Eu/TiO2 | PA-DA | Ce-Eu/ TiO2 | 64.6/59.1 | 27.54/17.12 | — | HCHO decomposition | [ |
C18@titania | aerosol process + hydro thermal post-treatment | TiO2 | n- octadecane | TiO2 | 97/92 | 28.7/21 | — | CH3SH decomposition | [ |
Table 2 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in photocatalysis fields.
PCMs@Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ Crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag-Paraffin @Halloysite | self-assembly method | Ag + Halloysite | paraffin | Ag | 150.58/ 136.42 | 61.82/57.93 | 87.4 | 4-nitrophenol reduction | [ |
TiO2/poly(4-MeS-co-DVB)@hexadecane | one-pot non-Pickering emulsion templated suspension polymerization method | TiO2 + [poly(4- ethylstyrene-co- divinylbenzene)] | hexadecane | TiO2 | 182.0±3/ 174.0±3 | 17.5±0.3/ — | 76.6 | methylene blue degradation | [ |
TiO2@ n-eicosane | sol-gel method + in-situ polycondensation | TiO2 | n-eicosane | TiO2 | 97.6/ 95.33 | 43.88/35.39 | 49.9 | methylene blue degradation | [ |
n-eicosane@ TiO2@graphene | interfacial polycondensation + surface self-assembly | graphene + TiO2 | paraffin | TiO2 | ~162/ ~160 | ~40/~33 | 65.59 | methyl blue degradation | [ |
ZnO@n-eicosane | in-situ precipitation method | ZnO | n-eicosane | ZnO | 50‒135/ 28‒133 | 38~40/ 29~31 | 35~70 | methylene blue degradation | [ |
ZnO/SiO2@ n-docosane | emulsion-templated interfacial condensation + structure-induced growth method | ZnO + SiO2 | n-docosane | ZnO | 139/~137 | ~44/~35 | ~60 | — | [ |
TiO2/poly(HDDA)@paraffin | microfluidic emulsification + on-the-fly photopolymerization | poly(1,6-hexanediol diacrylate) + TiO2 | paraffin | TiO2 | — | — | — | methylene blue degradation | [ |
paraffin@SiO2/ FeOOH | interfacial condensation method | FeOOH + SiO2 | paraffin | FeOOH | 104.44/ 101.69 | 26.1/25.49 | 49.68 | methylene blue degradation | [ |
TiO2@SnBi58 | ultrasonic polymerization + liquid-phase precipitation method | TiO2 | SnBi58 | TiO2 | 46.61/ 37.57 | 137.6/132.1 | — | methylene blue degradation | [ |
TiO2-polyurethane@butyl stearate | interfacial polymerization method | TiO2-polyurethane | butyl stearate | TiO2 | 16.75/— | 26/— | — | MO degradation | [ |
Cu2O@n-eicosane | emulsion template self-assembly method + in-situ precipitation | Cu2O | n-eicosane | Cu2O | 165.3/ 163.1 | 38.71/32.52 | 61.61 | degradation of malachite green, acid fuchsin, Congo red | [ |
SiO2/TiO2/PDA@n-eicosane | interfacial polycondensation method + sol-gel method | SiO2/TiO2/PDA | n-eicosane | TiO2 | ~125/ ~125 | ~43/~35 | — | RhB degradation | [ |
n-eicosane/TiO2-based microcapsules | emulsion-templated interfacial polycondensation method | TiO2 | n-eicosane | TiO2 | ~185/ ~180 | ~41.8/~30 | 75.9 | RhB degradation | [ |
PDVB/TiO2@ paraffin | pickering emulsion polymerization method | TiO2 + PDVB | paraffin | TiO2 | 139.1/ 140.8 | 26.6/23.5 | 78.9 | HCHO decomposition | [ |
D-P@Ce-Eu/ TiO2 | interfacial condensation + vacuum impregnation | Ce-Eu/TiO2 | DA-PA | Ce-Eu/ TiO2 | — | — | — | HCHO decomposition | [ |
PA-DA@ Ce-Eu/TiO2 | interfacial condensation + vacuum impregnation method | Ce-Eu/TiO2 | PA-DA | Ce-Eu/ TiO2 | 64.6/59.1 | 27.54/17.12 | — | HCHO decomposition | [ |
C18@titania | aerosol process + hydro thermal post-treatment | TiO2 | n- octadecane | TiO2 | 97/92 | 28.7/21 | — | CH3SH decomposition | [ |
Fig. 9. (A) Schematic illustration of Ag-Paraffin@Halloysite. (B) Catalytic mechanism of Ag-Paraffin@Halloysite before and after radiation. (C) UV-vis absorbance of 4-nitrophenol using Ag-Paraffin@Halloysite catalyst after radiation. Reprinted with permission from Ref. [44]. Copyright 2018, Elsevier Ltd.
Fig. 10. (A) Synthetic routine of graphene@TiO2@n-eicosane microcapsules. (B) Infrared thermographic images of graphene@TiO2@n-eicosane microcapsules containing (SP1) 0 wt%, (SP2) 1 wt%, (SP3) 3 wt% and (SP4) 5 wt% graphene nanosheets during heating process. (C) UV-visible absorptance spectra and digital photos of MB by n-eicosane@TiO2@graphene microcapsules containing 5 wt% graphene nanosheets. (D) Plots of degradation rate as a function of irradiation time for different samples. Reprinted with permission from Ref. [54]. Copyright 2017, American Chemical Society.
Fig. 11. (A) Synthetic strategy of the multifunctional PCMs@Catalysts. (B) The survival rates of Escherichia coli and Staphylococcus aureus with contact time catalyzed by PCMs@Catalysts. (C) UV-visible absorptance spectra of the MB solution catalyzed by PCMs@Catalysts under different UV illumination times. Reprinted with permission from Ref. [31]. Copyright 2015, Elsevier Ltd.
Fig. 12. (A) Preparation process and reaction mechanism of bifunctional microcapsules. (B) Relationship plots between temperature and time for pure n-eicosane and microcapsule samples in photothermal conversion tests. (C) Degrees of degradation with illumination time for different organic dyes. (D) UV-visible absorptance spectra and digital photos of organic dyes catalyzed by microcapsules with sunlight illumination time. Reprinted with permission from Ref. [49]. Copyright 2017, Elsevier B.V.
Fig. 13. Synthetic mechanism (A) and TEM images (B) of the n-eicosane/TiO2-based microcapsules with different morphologies. (C) UV-visible spectra of Rhodamine B using the tubular microcapsules catalysts during the photodegradation process. (D) Curves of degradation rate with illumination time catalyzed by microencapsulated samples. Reprinted with permission from Ref. [93]. Copyright 2019, Elsevier Ltd.
Fig. 14. (A) Fabricated process of PA-DA@Ce-Eu/TiO2 microspheres. (B) Photocatalytic mechanism for HCHO of PA-DA@Ce-Eu/TiO2 microspheres. (C) Degradation rate of HCHO for different microspheres. Reprinted with permission from Ref. [95]. Copyright 2020, John Wiley & Sons, Inc.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Active component | Melting/ freezing enthalpy (J/g) | Melting/crystalli zation temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
MEPCM- PANI/PR | emulsion-templated interfacial condensation + in-situ oxidation polymerization | PANI/PR/ SiO2 | n-docosane | PANI | ~120/~120 | ~45/~34 | 50.2 | supercapacitors | [ |
MnO2/SiO2@ n-docosane | interfacial condensation + template-directed self-assembly method | MnO2/ SiO2 | n-docosane | MnO2 | ~175/~170 | ~46/~35 | 63.1 | [ | |
Ni(OH)2-SiO2-MEPCM | emulsion-templated interfacial condensation + structure-directed interfacial precipitation | Ni(OH)2- SiO2 | n-docosane | Ni(OH)2 | 140.52/139.1 | 48.56/31.29 | 59.97 | [ | |
MEPCM- PANi/CNTs | emulsion-templated interfacial polycondensation + in-situ oxidative polymerization | PANi/ CNTs/SiO2 | n-docosane | PANi/CNTs | 142.7/143.2 | 45.6/34.2 | 61.2 | [ | |
CNF/GP/ MPCMs | in-situ polymerization + one-pot electrochemical co-deposition method | melamine resin | n- octadecane | PANi/CNF | 201.63/199.54 | ~30/~10 | 81.18 | [ | |
OA-PEG/ SiO2/SnO2 NEPCMs | in-situ emulsion interfacial hydrolysis + polycondensation + ionic layer adsorption | SnO2/SiO2 | oleic acid - polyethylene glycol | SnO2 | 58.79/55.49 | 3.11/2.57 | 52.12 | electrode reaction | [ |
Table 3 Synthetic methods, microphysical properties and applications of PCMs@Catalysts in electrochemistry fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Active component | Melting/ freezing enthalpy (J/g) | Melting/crystalli zation temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
MEPCM- PANI/PR | emulsion-templated interfacial condensation + in-situ oxidation polymerization | PANI/PR/ SiO2 | n-docosane | PANI | ~120/~120 | ~45/~34 | 50.2 | supercapacitors | [ |
MnO2/SiO2@ n-docosane | interfacial condensation + template-directed self-assembly method | MnO2/ SiO2 | n-docosane | MnO2 | ~175/~170 | ~46/~35 | 63.1 | [ | |
Ni(OH)2-SiO2-MEPCM | emulsion-templated interfacial condensation + structure-directed interfacial precipitation | Ni(OH)2- SiO2 | n-docosane | Ni(OH)2 | 140.52/139.1 | 48.56/31.29 | 59.97 | [ | |
MEPCM- PANi/CNTs | emulsion-templated interfacial polycondensation + in-situ oxidative polymerization | PANi/ CNTs/SiO2 | n-docosane | PANi/CNTs | 142.7/143.2 | 45.6/34.2 | 61.2 | [ | |
CNF/GP/ MPCMs | in-situ polymerization + one-pot electrochemical co-deposition method | melamine resin | n- octadecane | PANi/CNF | 201.63/199.54 | ~30/~10 | 81.18 | [ | |
OA-PEG/ SiO2/SnO2 NEPCMs | in-situ emulsion interfacial hydrolysis + polycondensation + ionic layer adsorption | SnO2/SiO2 | oleic acid - polyethylene glycol | SnO2 | 58.79/55.49 | 3.11/2.57 | 52.12 | electrode reaction | [ |
Fig. 15. (A) Synthesis mechanism of n-docosane PCMs-containing microcapsules with nanoflake-like MnO2/SiO2 shell. (B) CV curves of MEPCM-PANI/PR at different working temperatures with a scanning rate of 100 mV/s. (C) Curves of capacitance retention with cycle number for MEPCMs at 45 °C with a current density of 2.0 A/g. Reprinted with permission from Ref. [35]. Copyright 2018, Elsevier Ltd.
Fig. 16. Schematic synthetic route and reaction mechanism of Ni(OH)2-SiO2-MEPCM (A) and MEPCM-PANi/CNTs (D). SEM images of Ni(OH)2-SiO2-MEPCM (B) and MEPCM-PANi/CNTs (E). CV curves of Ni(OH)2-SiO2-MEPCM (C) and MEPCM-PANi/CNTs (F). Reprinted with permission from Ref. [16] (Figs. 16(A)?(C)). Copyright 2020, Elsevier B.V. Reprinted with permission from Ref. [101] (Figs. 16(D)?(F)). Copyright 2019, Elsevier Ltd.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag/SiO2@ n-eicosane | interfacial condensation + silver reduction method | Ag/SiO2 | n-eicosane | Ag | ~155/ ~153 | ~40/~32.5 | 67 | inactivation of Staphylococcus aureus and Bacillus subtilis | [ |
Ag/SiO2-MicroPCMs | photocurable pickering emulsion polymerization + silver reduction method | Ag/SiO2-PMMA | n- octadecane | Ag | 110.76/ ~110 | ~25/~14 | — | inactivation of staphylococcus aureus | [ |
α-amylase/Fe3O4/SiO2@n-docosane | pickering emulsion-templated suspension polymerization | α-amylase /Fe3O4/SiO2 | n-docosane | α- amylase | 157.6/ 156.3 | 44.9/35.2 | 58 | starch decomposition | [ |
CRL/TiO2/Fe3O4@n-eicosane | pickering emulsion templating self-assembly + interfacial polycondensation | CRL/TiO2 /Fe3O4 | n-eicosane | CRL | 138.3/ 137.6 | 38.6/32.4 | 51.36 | hydrolysis of olive oil | [ |
Pen X-CS@SiO2-MEPCM | emulsion-templated interfacial poly-condensation | Pen X/CS/SiO2 | n-docosane | Pen X | 127.2/ 125.2 | 44.5/35.1 | 54.7 | hydrolysis of penicillin | [ |
LA-Au/ PDA@SiO2- MEPCM | surfactant-assisted self-assembly + in-situ reduction + immobilized copper chelate method | LA-Au/PDA @SiO2 | n-docosane | LA | ~120/ ~120 | ~45/~35 | 51.5 | ABTS oxidation | [ |
ZIF-8@PPy- SiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction | ZIF-8@ PPy-SiO2 | n-docosane | LA+ ZIF-8 | >120/>120 | ~45/~34 | >51 | dopamine detection | [ |
HRP@PPy- TiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction + physical adsorption | HRP@ PPy-TiO2 | n-eicosane | HRP | ~115/~115 | ~37/~26 | >51 | catechol detection | [ |
Tyr-Fe3O4/PPy@TiO2@n-C20 MEPCM | emulsion-templated interfacial polycondensation + surfactant-assisted self-assembly + oxidation polymerization | Tyr/Fe3O4/ PPy/TiO2 | n-eicosane | tyrosinase | 153.1/149.0 | 37.85/28.28 | 71.90 | catechol detection | [ |
Table 4 Synthetic methods, microphysical properties and applied reactions of PCMs@Catalysts in biocatalysis fields.
PCMs@ Catalysts | Synthesis method | Shell layer | PCM core | Catalyst | Melting/ freezing enthalpy (J/g) | Melting/ crystallization temperature (°C) | Encapsulation rate (%) | Reaction | Ref. |
---|---|---|---|---|---|---|---|---|---|
Ag/SiO2@ n-eicosane | interfacial condensation + silver reduction method | Ag/SiO2 | n-eicosane | Ag | ~155/ ~153 | ~40/~32.5 | 67 | inactivation of Staphylococcus aureus and Bacillus subtilis | [ |
Ag/SiO2-MicroPCMs | photocurable pickering emulsion polymerization + silver reduction method | Ag/SiO2-PMMA | n- octadecane | Ag | 110.76/ ~110 | ~25/~14 | — | inactivation of staphylococcus aureus | [ |
α-amylase/Fe3O4/SiO2@n-docosane | pickering emulsion-templated suspension polymerization | α-amylase /Fe3O4/SiO2 | n-docosane | α- amylase | 157.6/ 156.3 | 44.9/35.2 | 58 | starch decomposition | [ |
CRL/TiO2/Fe3O4@n-eicosane | pickering emulsion templating self-assembly + interfacial polycondensation | CRL/TiO2 /Fe3O4 | n-eicosane | CRL | 138.3/ 137.6 | 38.6/32.4 | 51.36 | hydrolysis of olive oil | [ |
Pen X-CS@SiO2-MEPCM | emulsion-templated interfacial poly-condensation | Pen X/CS/SiO2 | n-docosane | Pen X | 127.2/ 125.2 | 44.5/35.1 | 54.7 | hydrolysis of penicillin | [ |
LA-Au/ PDA@SiO2- MEPCM | surfactant-assisted self-assembly + in-situ reduction + immobilized copper chelate method | LA-Au/PDA @SiO2 | n-docosane | LA | ~120/ ~120 | ~45/~35 | 51.5 | ABTS oxidation | [ |
ZIF-8@PPy- SiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction | ZIF-8@ PPy-SiO2 | n-docosane | LA+ ZIF-8 | >120/>120 | ~45/~34 | >51 | dopamine detection | [ |
HRP@PPy- TiO2-MEPCM | emulsion-templated interfacial condensation + oxidative polymerization reaction + physical adsorption | HRP@ PPy-TiO2 | n-eicosane | HRP | ~115/~115 | ~37/~26 | >51 | catechol detection | [ |
Tyr-Fe3O4/PPy@TiO2@n-C20 MEPCM | emulsion-templated interfacial polycondensation + surfactant-assisted self-assembly + oxidation polymerization | Tyr/Fe3O4/ PPy/TiO2 | n-eicosane | tyrosinase | 153.1/149.0 | 37.85/28.28 | 71.90 | catechol detection | [ |
Fig. 17. (A) Synthetic strategy of multifunctional PCMs@Catalysts with n-eicosane as the core and Ag/SiO2 bilayer as the shell. Digital photos of the Petri dishes loading Escherichia coli (B), Staphylococcus aureus (C) and Bacillus subtilis (D) with different contact times. Reprinted with permission from Ref. [36]. Copyright 2016, Elsevier Ltd.
Fig. 18. The synthetic routine (A), SEM images (B) and high-resolution XPS spectra (C) of α-amylase-immobilized microcapsules with a Fe3O4/SiO2 hybrid shell. (D) Relative activities of different samples as a function of ambient temperature. (E) Relative activities of α-amylase-immobilized microcapsules during the cycle experiments. Reprinted with permission from Ref. [103]. Copyright 2017, American Chemical Society. The schematic pathway (F), TEM images (G) and FT-IR spectra (H) of CRL-immobilized microcapsules with a TiO2/Fe3O4 hybrid shell. (I) Relative activities of different samples with environmental temperature. (J) Magnetic hysteresis curve of CRL-immobilized microcapsules. Reprinted with permission from Ref. [37]. Copyright 2017, Elsevier Ltd.
Fig. 19. Fabrication process and formation mechanisms (A), detection mechanism for penicillin (B) and SEM micrographs of Pen X-CS@SiO2-MEPCM (C). (D) The influence of different GLA concentrations on residual activities of Pen X-CS@SiO2-MEPCM. (E) The effect of different environment temperatures on residual activities of Pen X-CS@SiO2-MEPCM, Pen X-CS@SiO2-Spheres and free Pen X. Reprinted with permission from Ref. [105]. Copyright 2022, Elsevier Ltd.
Fig. 20. (A) Fabricated method of laccase-immobilization on the surface of Au/PDA@SiO2-MEPCM carrier. EDX spectrum (B) and TEM image (C) of LA-Au/PDA@SiO2-MEPCM. (D) Relative enzyme activity of LA-Au/PDA@SiO2-MEPCM, LA-Au/PDA@SiO2-Spheres and free laccase at different operating temperatures. Reprinted with permission from Ref. [106]. Copyright 2020, Elsevier B.V.
Fig. 21. Scheme of fabrication methodologies for SiO2-MEPCM (A) and TiO2-MEPCM (B). Scheme of reaction mechanisms for ZIF-8@PPy-SiO2-MEPCM (C) and HRP@PPy-TiO2-MEPCM (D). Schematic synthesis process of electrochemical biosensors based on the ZIF-8@PPy-SiO2-MEPCM-modified electrode (E) and HRP@PPy-TiO2-MEPCM-modified electrode (F). Reprinted with permission from Ref. [38] (Figs. 21(A), (C) and (E)). Copyright 2021, American Chemical Society. Reprinted with permission from Ref. [39] (Figs. 21(B), (D) and (F)). Copyright 2021, Elsevier B.V.
|
[1] | 海广通, 富忠恒, 刘欣, 黄秀兵. 电催化还原氮制氨的最新进展[J]. 催化学报, 2024, 60(5): 107-127. |
[2] | 孙泽晖, 来壮壮, 赵影影, 陈建富, 马巍. 解析单颗粒电化学分步电子转移步骤用于识别电催化剂本征活性[J]. 催化学报, 2024, 60(5): 262-271. |
[3] | 吴维凡, 范晋歌, 赵振宏, 潘建敏, 杨静, 阎兴斌, 詹怡. 馄饨结构的KB@Co-C3N4在中性电解质中作为锌空气电池的高活性和稳定性氧催化剂[J]. 催化学报, 2024, 60(5): 178-189. |
[4] | 冯超, 李严波. 实现稳定光电化学水分解的自修复机制[J]. 催化学报, 2024, 60(5): 158-170. |
[5] | 虞周楠, 张磊磊, 谈源龙, 井日峥, 曹宏晨, 楼才溢, 格日乐, 王军虎, 王爱琴, 张涛. SnCl2促进的Pt1/PS-PPh2催化剂高选择性催化高碳烯烃氢甲酰化反应[J]. 催化学报, 2024, 60(5): 316-326. |
[6] | 李沐霖, 谢一萌, 宋静婷, 杨级, 董金超, 李剑锋. 碳载金属单原子催化剂的电合成氨进展[J]. 催化学报, 2024, 60(5): 42-67. |
[7] | 苟王燕, 王译晨, 张铭凯, 谈晓荷, 马媛媛, 瞿永泉. 设计稳定的钌基析氢和析氧反应催化剂的基本原理[J]. 催化学报, 2024, 60(5): 68-106. |
[8] | 廖伟, 周乾, 龙瑾, 吴臣中, 王彬, 彭琼, 曹建新, 王青梅. 碳载体空位工程助力原位合成的Pt纳米枝晶促进电催化氧气还原[J]. 催化学报, 2024, 59(4): 260-271. |
[9] | 程成, 任伟, 张晖, 段晓光, 王少彬. 基于单原子铁催化剂的过一硫酸盐高级氧化过程: 配位结构和活性组分[J]. 催化学报, 2024, 59(4): 15-37. |
[10] | 聂翼飞, 颜红萍, 鹿苏微, 张宏伟, 齐婷婷, 梁诗景, 江莉龙. 理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究[J]. 催化学报, 2024, 59(4): 293-302. |
[11] | 宋宁, 江吉周, 洪士欢, 王赟, 李春梅, 董红军. 以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展[J]. 催化学报, 2024, 59(4): 38-81. |
[12] | 李星局, 李峥, 冯四全, 宋宪根, 严丽, 母佳利, 袁乔, 宁丽丽, 陈维苗, 韩仲康, 丁云杰. 合金纳米颗粒原子级分散制备的双位点催化剂中单点Ag1对Pd1在炔烃双烷氧羰基化反应中的促进作用[J]. 催化学报, 2024, 59(4): 282-292. |
[13] | 吴德贵, 熊孝根, 赵中栋, 宋树芹, 丁朝斌. 揭示配体拓扑结构对Fe-Nx-C单原子催化剂表面氧还原反应中间体吸附的影响[J]. 催化学报, 2024, 59(4): 214-224. |
[14] | 张俊磊, 刘文聪, 刘彪, 段晓光, 敖志敏, 朱明山. 单原子活化过一硫酸盐性能更好?与金属氧化物耦合可能更高效[J]. 催化学报, 2024, 59(4): 137-148. |
[15] | 屠振涛, 何晓洋, 刘璇, 熊登科, 左娟, 吴德礼, 汪建营, 陈作锋. 通过钨对镍活性位点的电子改性实现苯甲胺选择性氧化耦合制氢[J]. 催化学报, 2024, 58(3): 146-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||