催化学报 ›› 2025, Vol. 77: 153-170.DOI: 10.1016/S1872-2067(25)64782-6

• 论文 • 上一篇    下一篇

远程氢溢流效应调控催化转腈化反应合成生物质基腈类化合物

张桂鹏, 宾燕, 王岩鑫, 陈金铸*()   

  1. 暨南大学化学与材料学院, 广东广州 511443
  • 收稿日期:2025-05-08 接受日期:2025-06-30 出版日期:2025-10-18 发布日期:2025-10-05
  • 通讯作者: *电子信箱: chenjz@jnu.edu.cn (陈金铸).
  • 基金资助:
    国家自然科学基金(22075104);广东省基础与应用基础研究基金(2025A1515010832)

Remote hydrogen-spillover effect on catalytic transnitrilation for biomass-based nitrile synthesis

Guipeng Zhang, Yan Bin, Yanxin Wang, Jinzhu Chen*()   

  1. College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, Guangdong, China
  • Received:2025-05-08 Accepted:2025-06-30 Online:2025-10-18 Published:2025-10-05
  • Contact: *E-mail: chenjz@jnu.edu.cn (J. Chen).
  • Supported by:
    National Natural Science Foundation of China(22075104);Guangdong Basic and Applied Basic Research Foundation(2025A1515010832)

摘要:

腈类化合物是重要的多功能有机合成砌块, 可以有效转化为醛、酮、胺、酰胺、亚胺、亚氨醚、羧酸和杂环化合物, 广泛用于医药、农药、聚合物、增塑剂以及合成中间体等. 它的经典合成方法包括伯酰胺或醛肟的脱水、醛与羟胺的氰化、烯烃或1,3-二烯的氢氰化、芳基卤化物的氰化、羧酸或Barton酯的脱羧氰化以及烷基碘化物的自由基氰化反应,但通常表现为多步合成反应、使用贵金属作为催化剂、反应条件较为苛刻、使用有毒的脱氧试剂和氮源、底物适用范围较窄. 转腈化反应是当前公认的最为高效的腈类化合物合成方法之一,该策略在酸催化条件下采用低沸点的乙腈作为牺牲性腈试剂, 与有机羧酸直接经过氰基与羧基的官能团交换反应实现新氰类化合物的合成, 其核心是高效固体酸催化剂的构建.

鉴于此, 本文采用乙腈与生物质基肉桂酸的转腈化合成肉桂腈为模型反应, 聚焦从分子尺度理解远程氢溢流效应原位调控固体酸表面酸类型和酸强度的机理, 旨在揭示氢溢流增强固体酸催化性能、促进转腈化反应机制. 本文构建了限域型Pt@ZSM-5作为氢溢流发生器、掺杂型Ni/Nb2O5作为固体酸, 研究了物理混合的Pt@ZSM-5和Ni/Nb2O5在10%-H2/N2气氛下协同催化肉桂酸与乙腈的转腈化反应. 研究揭示, 远程氢溢流效应涉及: 氢气分子在Pt@ZSM-5作用下吸附活化形成氢溢流、氢溢流经溶剂介导远程迁移至Ni/Nb2O5表面、Ni/Nb2O5表面掺杂的可逆Ni2+/Ni+电对促进质子(Brönsted酸性位点)和表面空位(Lewis酸性位点)在其表面快速迁移, 最终增强和富集了Ni/Nb2O5的表面酸性位点、促进了转腈化反应. 动力学分析进一步表明, 乙腈在Ni/Nb2O5表面Lewis酸性位点上的活化是转腈化反应的速度决定步骤, 远程氢溢流效应的存在可将该步骤的表观活化能由53.8降至34.6 kJ mol-1, 并将反应速率常数由4.12 × 10-1提升至8.15 × 10-1 h-1 (190 °C). Pt@ZSM-5和Ni/Nb2O5的远程氢溢流效应还广泛适用芳香酸、卤代芳香酸、杂芳香酸、脂肪酸、二元酸等22种有机羧酸与乙腈的转腈化反应.

综上, 本文基于远程氢溢流效应原位调控固体酸的表面酸类型和酸强度, 促进酸性位点在其表面快速迁移, 显著提升了转腈化反应的催化效率, 为设计新一代固体酸催化剂提供了新思路, 为绿色合成具有重要工业应用价值的腈类化合物提供了新方法.

关键词: 酸性, 生物质, 氢溢流, 表面空位, 转腈化反应

Abstract:

Acid-nitrile exchange reaction (transnitrilation) is a state-of-the-art strategy for nitrile synthesis with a promising industrial application. Herein, a dedicated catalytic system for transnitrilation was designed based on remote H-spillover effect by physically mixing Pt nanoparticles-encapsulated in hollow ZSM-5 (Pt@ZSM-5) and Ni-doped Nb2O5 (Ni/Nb2O5) under 10%-H2/N2. The Pt@ZSM-5 acts as a primary active-center for H2-dissociation over Pt to form H-spillover; while, Ni/Nb2O5 serves as an acceptor-site of H-spillover. Upon uptake of the H-spillover, the doped-reversible Ni2+/Ni+ couples in the Ni/Nb2O5 significantly facilitate migrations of proton (Brönsted-acid site) and surface vacancy (Lewis-acid site) throughout its surface, thus enhancing and enriching its surface-acidic sites for the catalytic transnitrilation. Kinetic analysis demonstrates nitrile-activation over Lewis-acid site of Ni/Nb2O5 as rate-determining step of the transnitrilation. This research provides a molecular-scale and fundamental understanding of remote H-spillover effect on a solid acid for an improved catalytic performance by in-situ regulation on its surface-acid type and strength.

Key words: Acidity, Biomass, Hydrogen spillover, Surface vacancy, Transnitrilation