催化学报 ›› 2025, Vol. 68: 177-203.DOI: 10.1016/S1872-2067(24)60177-4

• 综述 • 上一篇    下一篇

金属有机框架中限域金属物种用于CO2加氢: 合成方法、催化机理及未来展望

钟百灵a, 胡俊蝶a, 杨晓刚a, 舒银颖a, 蔡亚辉b, 李长明a,*(), 曲家福a,*()   

  1. a苏州科技大学材料科学与工程学院, 江苏苏州 215009
    b南京林业大学材料科学与工程学院, 江苏南京 210037
  • 收稿日期:2024-08-23 接受日期:2024-10-24 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: ecmli@usts.edu.cn (李长明), qjf@usts.edu.cn (曲家福).
  • 基金资助:
    江苏省自然科学基金(BK20210867);江苏省自然科学基金(BK20231342);中国博士后科学基金(2024M752349);江苏省高等学校自然科学研究项目(21KJB150038);国家自然科学基金(U1604121)

Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives

Bailing Zhonga, Jundie Hua, Xiaogang Yanga, Yinying Shua, Yahui Caib, Chang Ming Lia,*(), Jiafu Qua,*()   

  1. aSchool of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
    bCollege of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2024-08-23 Accepted:2024-10-24 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: ecmli@usts.edu.cn (C. M. Li),qjf@usts.edu.cn (J. Qu).
  • About author:Chang Ming Li (School of Materials Science and Engineering, Suzhou University of Science and Technology) received his B.S. degree from University of Science and Technology of China in 1970, and Ph.D. degree from Wuhan University in 1987. He worked at Nanyang Technological University (from 2003 to 2012) and Southwest University (from 2012 to 2016). Since 2017, he has been working in Suzhou University of Science and Technology. His research interests mainly focus on cross-field sciences including functional nanomaterials and green energies. He has published 800 more peer-reviewed journal papers and H-index of 107 as well as 240 patents. He is the Chief Editor of Mater. Rep.: Energy.
    Jiafu Qu (School of Materials Science and Engineering, Suzhou University of Science and Technology) received his Ph.D degree in 2020 from Soochow University under the supervision of Prof. Jianmei Lu. During his Ph.D. studies, he spent one year at the National University of Singapore (NUS) in the group of Prof. Ning Yan. Since 2020 he has been working as an associate professor at Suzhou University of Science and Technology. His research interest is centered on the synthesis and application of micro-nano materials, including photocatalytic/photothermal catalytic CO2 hydrogenation, VOCs degradation, water purification, and biomass conversion. He has published more than 50 peer-reviewed papers. He became a young member of the editorial board of Mater. Rep.: Energy Since 2024.
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20210867);Natural Science Foundation of Jiangsu Province(BK20231342);China Postdoctoral Science Foundation(2024M752349);Natural Science Research Project of Higher Education Institutions in Jiangsu Province(21KJB150038);National Natural Science Foundation of China(U1604121)

摘要:

金属有机框架(MOFs)作为超小金属物种的有效载体, 可合成性能优越、稳定性强、选择性优异的纳米催化材料. 此外, MOFs与其限域的金属物种之间的协同作用可以显著提升CO2加氢反应活性. 本综述重点探讨了MOFs限域金属的最新合成进展及其在光催化、热催化和光热催化等多种方法中催化CO2转化的应用; 此外, 还重点阐述了各种催化CO2加氢反应的基本原理及影响因素, 并对该领域的未来研究方向进行展望.
本文系统地介绍了MOFs限域金属物种在CO2加氢反应中的研究进展. 首先, 探讨了MOFs及其限域金属的合成方法, 其中MOFs的合成主要包括传统技术、微波辅助合成、电化学合成以及一锅法等, 而MOFs限域金属的合成方法则包括一锅法、“船在瓶中”和“瓶围船”方法以及自牺牲方法. 随后详细阐述了MOFs限域金属在光催化、热催化和光热催化CO2加氢反应中的基本原理和影响因素, 并重点介绍了提高反应效率的策略. 例如, 通过元素掺杂、电子结构调控以及界面效应和尺寸效应等方式, 可以有效提升光催化CO2加氢的活性. 而在热催化中, 调节金属中心、优化MOFs孔道结构、调整金属物种的组成和尺寸以及优化反应条件等方法可以显著提高催化活性. 光热催化方面, 则可以通过调节反应光源、优化催化剂结构以及掺杂和复合其他材料来增强光热转换效率, 从而提升反应活性. 最后, 指出了该领域存在的挑战及未来展望: (1) MOFs结构复杂, 如何精准控制金属物种在MOFs中的分布至关重要; (2) MOFs及其限域金属催化剂的规模化和重复性在工业应用中面临重大挑战; (3) MOFs结构不稳定且反应中存在金属流失问题; (4) 研究MOFs与非贵金属催化剂之间的协同作用在CO2加氢中具有较大潜力.
综上, 本文详细阐述了MOFs限域金属在CO2加氢应用中的研究进展, 包括其独特的催化性能、结构优势以及作用机制, 旨在为实现CO2高效转化提供有效的理论基础和指导方向, 促进碳资源的循环利用与可持续发展.

关键词: 金属有机框架, 金属物种, CO2加氢, 多相催化, 限域效应

Abstract:

Metal-organic frameworks (MOFs) serve as highly effective hosts for ultrasmall metal species, creating advanced nanocatalysts with superior catalytic performance, stability, and selective activity. The synergistic interplay between metal species confined within MOF nanopores and their active sites enhances catalytic efficiency in CO2 hydrogenation reactions. Herein, recent advancements in synthesizing metal-confined MOFs are discussed, along with their applications in catalyzing CO2 conversion through various methods such as photocatalysis, thermal catalysis, and photothermal catalysis. Additionally, we further emphasize the fundamental principles and factors that influence various types of catalytic CO2 hydrogenation reactions, while offering insights into future research directions in this dynamic field.

Key words: Metal-organic framework, Metal species, CO2 hydrogenation, Heterogeneous catalysis, Confinement