催化学报 ›› 2025, Vol. 68: 177-203.DOI: 10.1016/S1872-2067(24)60177-4
钟百灵a, 胡俊蝶a, 杨晓刚a, 舒银颖a, 蔡亚辉b, 李长明a,*(), 曲家福a,*(
)
收稿日期:
2024-08-23
接受日期:
2024-10-24
出版日期:
2025-01-18
发布日期:
2025-01-02
通讯作者:
* 电子信箱: ecmli@usts.edu.cn (李长明),
qjf@usts.edu.cn (曲家福).基金资助:
Bailing Zhonga, Jundie Hua, Xiaogang Yanga, Yinying Shua, Yahui Caib, Chang Ming Lia,*(), Jiafu Qua,*(
)
Received:
2024-08-23
Accepted:
2024-10-24
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
Chang Ming Li (School of Materials Science and Engineering, Suzhou University of Science and Technology) received his B.S. degree from University of Science and Technology of China in 1970, and Ph.D. degree from Wuhan University in 1987. He worked at Nanyang Technological University (from 2003 to 2012) and Southwest University (from 2012 to 2016). Since 2017, he has been working in Suzhou University of Science and Technology. His research interests mainly focus on cross-field sciences including functional nanomaterials and green energies. He has published 800 more peer-reviewed journal papers and H-index of 107 as well as 240 patents. He is the Chief Editor of Mater. Rep.: Energy.Supported by:
摘要:
金属有机框架(MOFs)作为超小金属物种的有效载体, 可合成性能优越、稳定性强、选择性优异的纳米催化材料. 此外, MOFs与其限域的金属物种之间的协同作用可以显著提升CO2加氢反应活性. 本综述重点探讨了MOFs限域金属的最新合成进展及其在光催化、热催化和光热催化等多种方法中催化CO2转化的应用; 此外, 还重点阐述了各种催化CO2加氢反应的基本原理及影响因素, 并对该领域的未来研究方向进行展望.
本文系统地介绍了MOFs限域金属物种在CO2加氢反应中的研究进展. 首先, 探讨了MOFs及其限域金属的合成方法, 其中MOFs的合成主要包括传统技术、微波辅助合成、电化学合成以及一锅法等, 而MOFs限域金属的合成方法则包括一锅法、“船在瓶中”和“瓶围船”方法以及自牺牲方法. 随后详细阐述了MOFs限域金属在光催化、热催化和光热催化CO2加氢反应中的基本原理和影响因素, 并重点介绍了提高反应效率的策略. 例如, 通过元素掺杂、电子结构调控以及界面效应和尺寸效应等方式, 可以有效提升光催化CO2加氢的活性. 而在热催化中, 调节金属中心、优化MOFs孔道结构、调整金属物种的组成和尺寸以及优化反应条件等方法可以显著提高催化活性. 光热催化方面, 则可以通过调节反应光源、优化催化剂结构以及掺杂和复合其他材料来增强光热转换效率, 从而提升反应活性. 最后, 指出了该领域存在的挑战及未来展望: (1) MOFs结构复杂, 如何精准控制金属物种在MOFs中的分布至关重要; (2) MOFs及其限域金属催化剂的规模化和重复性在工业应用中面临重大挑战; (3) MOFs结构不稳定且反应中存在金属流失问题; (4) 研究MOFs与非贵金属催化剂之间的协同作用在CO2加氢中具有较大潜力.
综上, 本文详细阐述了MOFs限域金属在CO2加氢应用中的研究进展, 包括其独特的催化性能、结构优势以及作用机制, 旨在为实现CO2高效转化提供有效的理论基础和指导方向, 促进碳资源的循环利用与可持续发展.
钟百灵, 胡俊蝶, 杨晓刚, 舒银颖, 蔡亚辉, 李长明, 曲家福. 金属有机框架中限域金属物种用于CO2加氢: 合成方法、催化机理及未来展望[J]. 催化学报, 2025, 68: 177-203.
Bailing Zhong, Jundie Hu, Xiaogang Yang, Yinying Shu, Yahui Cai, Chang Ming Li, Jiafu Qu. Metal species confined in metal-organic frameworks for CO2 hydrogenation: Synthesis, catalytic mechanisms, and future perspectives[J]. Chinese Journal of Catalysis, 2025, 68: 177-203.
Fig. 1. The quantity of published articles (a) and references (b) pertaining to metal species constrained within MOFs during the period spanning 2014 to 2024.
Fig. 3. (a) Conventional solvothermal synthesis of MOF structures. Reprinted with permission from Ref. [57]. Copyright 2013, Springer Nature. (b) A perspective view of HKUST-1 illustrates its nanochannels arranged in a fourfold symmetry (the structure depicts copper atoms in blue, carbon atoms in grey, and oxygen atoms in red). Reprinted with permission from Ref. [61]. Copyright 1999, American Association for the Advancement of Science. (c) MOF-5's architecture features Zn4O tetrahedra (depicted as blue polyhedra) connected by benzene dicarboxylate linkers (where oxygen is red and carbon is black), forming an expansive three-dimensional cubic framework. Reprinted with permission from Ref. [62]. Copyright 1999, Springer Nature.
Fig. 6. (a) Diagram illustrating various synthetic pathways for dual-metal MOFs alongside their strengths and weaknesses. Reprinted with permission from Ref. [83]. Copyright 2022, Royal Society of Chemistry. (b) Metal exchange after synthesis to incorporate reduced metal cations into MOF-5 networks. Reprinted with permission from Ref. [89]. Copyright 2013, American Chemical Society.
Fig. 7. (a) The ‘‘one-pot” approach. Reprinted with permission from Ref. [93]. Copyright 2017, MDPI. (b) Integration of Pt nanoparticles into MOFs via a direct one-step technique (top) and a dynamically controlled one-step approach (bottom). Reprinted with permission from Ref. [97]. Copyright 2016, John Wiley and Sons. (c) Preparation of Pd0-in-UiO-67. Color legend: cyan represents secondary building units of MOFs; grey denotes organic connectors; orange indicates metal precursors or nanoparticles; red signifies stabilizing agents. Reprinted with permission from Ref. [98]. Copyright 2014, Royal Society of Chemistry.
Fig. 8. (a) The ‘‘ship-in-a-bottle’’ approach. (b) The ‘‘bottle-around-ship” approach. Reprinted with permission from Ref. [93]. Copyright 2017, MDPI.
Fig. 9. (a) Diagram illustrating the fabrication process of Ni NPs@MOF. (b) TEM micrograph of Ni-MOF-74 treated at 350 °C for 12 h, with an inset showing electron diffraction. Reprinted with permission from Ref. [107]. Copyright 2015, Royal Society of Chemistry. (c) Methodology for synthesizing Pd@ZIF-8 using mechanochemistry assistance. (d) TEM visuals depicting Pd@ZIF-8 structures. (e) XRD spectra comparing Pd/ZnO and Pd@ZIF-8. Reprinted with permission from Ref. [108]. Copyright 2019, Royal Society of Chemistry.
Type of catalysis | Typical catalyst | Selectivity | Yield | Ref. |
---|---|---|---|---|
Photocatalysis | Ag⊂Re-UiO-67 | — | 0.94/h | [ |
Co-ZIF-9 | — | TON:180 h−1 | [ | |
MIL-101(Cr)-Ag | — | CO: 808.2 µmol g−1 h−1, CH4: 427.5 µmol g−1 h−1 | [ | |
Cu NCs@UiO-66-NH2 | HCOOH: 86% | 128 µmol·h−1·g−1 | [ | |
Cu2O@Cu@UiO-66-NH2 | CH4: 61.4% | CO: 20.9 μmol g−1 h−1, CH4: 8.3 μmol g−1 h−1 | [ | |
MOF-525-Co | CH4: 15.4% | CO: 200.6 mmol g−1 h−1, CH4: 36.67 mmol g−1 h−1 | [ | |
Cu SAs/UiO-66-NH2 | — | methanol: 5.33 μmol g−1 h−1, ethanol: 4.22 μmol g−1 h−1 | [ | |
Thermocatalysis | microCu@Al‐bpydc | 100% | — | [ |
Cu⊂UiO-66 | 100% | TOF: 3.7 × 103 s−1 | [ | |
10Ni@MOF-5 | — | conversion: 75.1% CO2 | [ | |
Ni-Co@CMOF-74 | — | conversions: 65%CO2, 57% CH4 | [ | |
Ni@C/MCF-T | — | conversion: 53.4% CO2 | [ | |
Ru@MIL-101 | CH4:99% | TOF: 3257 h−1 | [ | |
Photothermal catalysis | AuPt@UiO-66-NH2 | 91% | 1451 μmol g metal−1 h−1 | [ |
Ag/MIL-100 (Fe) | 86%−92% | — | [ | |
Au&Pt@ZIF | 100% | TOF: 1522 h−1 | [ | |
Au@Pd@UiO-66-NH2-0.5 | — | 3737 μmol g metal−1 h−1 | [ |
Table 1 CO2 hydrogenation applications of catalysts with different catalytic modes.
Type of catalysis | Typical catalyst | Selectivity | Yield | Ref. |
---|---|---|---|---|
Photocatalysis | Ag⊂Re-UiO-67 | — | 0.94/h | [ |
Co-ZIF-9 | — | TON:180 h−1 | [ | |
MIL-101(Cr)-Ag | — | CO: 808.2 µmol g−1 h−1, CH4: 427.5 µmol g−1 h−1 | [ | |
Cu NCs@UiO-66-NH2 | HCOOH: 86% | 128 µmol·h−1·g−1 | [ | |
Cu2O@Cu@UiO-66-NH2 | CH4: 61.4% | CO: 20.9 μmol g−1 h−1, CH4: 8.3 μmol g−1 h−1 | [ | |
MOF-525-Co | CH4: 15.4% | CO: 200.6 mmol g−1 h−1, CH4: 36.67 mmol g−1 h−1 | [ | |
Cu SAs/UiO-66-NH2 | — | methanol: 5.33 μmol g−1 h−1, ethanol: 4.22 μmol g−1 h−1 | [ | |
Thermocatalysis | microCu@Al‐bpydc | 100% | — | [ |
Cu⊂UiO-66 | 100% | TOF: 3.7 × 103 s−1 | [ | |
10Ni@MOF-5 | — | conversion: 75.1% CO2 | [ | |
Ni-Co@CMOF-74 | — | conversions: 65%CO2, 57% CH4 | [ | |
Ni@C/MCF-T | — | conversion: 53.4% CO2 | [ | |
Ru@MIL-101 | CH4:99% | TOF: 3257 h−1 | [ | |
Photothermal catalysis | AuPt@UiO-66-NH2 | 91% | 1451 μmol g metal−1 h−1 | [ |
Ag/MIL-100 (Fe) | 86%−92% | — | [ | |
Au&Pt@ZIF | 100% | TOF: 1522 h−1 | [ | |
Au@Pd@UiO-66-NH2-0.5 | — | 3737 μmol g metal−1 h−1 | [ |
Type of catalysis | Typical catalyst | Metal specie | Size (nm) | Pore volume/size | Stability | Ref. |
---|---|---|---|---|---|---|
Photocatalysis | Ag⊂Re-UiO-67 | Ag NCs | 16 | — | 48 h | [ |
Co-ZIF-9 | Co | — | — | 5 cycles | [ | |
MIL-101(Cr)-Ag | Ag NPs | 80-800 | — | — | [ | |
Cu NCs@UiO-66-NH2 | Cu NCs | 80 | — | — | [ | |
Cu2O@Cu@UiO-66-NH2 | Cu NPs | 50 | 0.255 cm3 g−1 | 3 cycles | [ | |
MOF-525-Co | Co NPs | — | — | 3 cycles | [ | |
Cu SAs/UiO-66-NH2 | Cu SAs | — | 0.6109 cm3 g−1 | 4 cycles | [ | |
Thermocatalysis | microCu@Al‐bpydc | Cu NPs | — | 2-12 nm | — | [ |
Cu⊂UiO-66 | Cu NCs | 18 | — | 12 cycles | [ | |
10Ni@MOF-5 | Ni NPs | — | 1.037 cm3 g−1 | 100 h | [ | |
Ni-Co@CMOF-74 | Ni, Co NPs | — | — | 10 h | [ | |
Ni@C/MCF-T | Ni NPs | 4.5 | — | 10 h | [ | |
Ru@MIL-101 | Ru NPs | 2-3 | 0.95 cm3 g−1 | 48 h | [ | |
Photothermal catalysis | AuPt@UiO-66-NH2 | AuPt alloy NPs | 14.8 | — | — | [ |
Ag/MIL-100 (Fe) | Ag NPs | 5-7 | 2.5-2.9 nm | 3 cycles | [ | |
Au&Pt@ZIF | Pt nano-Cubes Au nano-cages | Pt: 6 Au: 31 | — | 6 cycles | [ | |
Au@Pd@UiO-66-NH2-0.5 | Pd skin/Au NPs | Au: 13.8 Pd: 0.5-2 | — | 3 cycles performance becomes 62% | [ |
Table 2 Properties of catalysts in different catalytic modes.
Type of catalysis | Typical catalyst | Metal specie | Size (nm) | Pore volume/size | Stability | Ref. |
---|---|---|---|---|---|---|
Photocatalysis | Ag⊂Re-UiO-67 | Ag NCs | 16 | — | 48 h | [ |
Co-ZIF-9 | Co | — | — | 5 cycles | [ | |
MIL-101(Cr)-Ag | Ag NPs | 80-800 | — | — | [ | |
Cu NCs@UiO-66-NH2 | Cu NCs | 80 | — | — | [ | |
Cu2O@Cu@UiO-66-NH2 | Cu NPs | 50 | 0.255 cm3 g−1 | 3 cycles | [ | |
MOF-525-Co | Co NPs | — | — | 3 cycles | [ | |
Cu SAs/UiO-66-NH2 | Cu SAs | — | 0.6109 cm3 g−1 | 4 cycles | [ | |
Thermocatalysis | microCu@Al‐bpydc | Cu NPs | — | 2-12 nm | — | [ |
Cu⊂UiO-66 | Cu NCs | 18 | — | 12 cycles | [ | |
10Ni@MOF-5 | Ni NPs | — | 1.037 cm3 g−1 | 100 h | [ | |
Ni-Co@CMOF-74 | Ni, Co NPs | — | — | 10 h | [ | |
Ni@C/MCF-T | Ni NPs | 4.5 | — | 10 h | [ | |
Ru@MIL-101 | Ru NPs | 2-3 | 0.95 cm3 g−1 | 48 h | [ | |
Photothermal catalysis | AuPt@UiO-66-NH2 | AuPt alloy NPs | 14.8 | — | — | [ |
Ag/MIL-100 (Fe) | Ag NPs | 5-7 | 2.5-2.9 nm | 3 cycles | [ | |
Au&Pt@ZIF | Pt nano-Cubes Au nano-cages | Pt: 6 Au: 31 | — | 6 cycles | [ | |
Au@Pd@UiO-66-NH2-0.5 | Pd skin/Au NPs | Au: 13.8 Pd: 0.5-2 | — | 3 cycles performance becomes 62% | [ |
Fig. 11. (a) Diagram depicting the sequential stages of photocatalytic CO2 conversion, encompassing light absorption, generation and separation of charges, and surface reactions. (b) Diagram illustrating the material functionalities crucial for photocatalytic CO2 conversion, comprising a light-capturing semiconductor and catalytically active sites. Reprinted with permission from Ref. [114]. Copyright 2020, Royal Society of Chemistry.
Fig. 12. (a) The proposed a possible reaction mechanism of CO2 methanation over 20Ni@MIL-101(DSM) catalyst. (b) Potential energy diagram for CO2 methanation on the Ni (111) surface slab structure. Each reactant, product and intermediate structures are also shown in the inset of the Figure. The label “IM” is the intermediate structure, and “TS” is the transition structure. Reprinted with permission from Ref. [102]. Copyright 2017, Elsevier.
Fig. 13. Ren-MOF structures (a) and Ag?Ren-MOF (b) are employed to enhance plasmon-assisted photocatalytic reduction of CO2. Reprinted with permission from Ref. [134]. Copyright 2017, American Chemical Society. (c) Molecular configuration of Co-ZIF-9. (d) Impact of varying quantities of Co-ZIF-9 on CO and H2 production in the CO2 photoreduction setup. Reprinted with permission from Ref. [136]. Copyright 2013, John Wiley and Sons.
Fig. 14. (a) Evaluating CO2 reduction efficiencies across different catalysts. (b) Diagram depicting electron transfer mechanisms in MIL-101(Cr)-Ag hybrids. Reprinted with permission from Ref. [140]. Copyright 2019, American Chemical Society. (c) Graph showing size reduction of Cu NCs@MOF-801 based on Cu NCs concentration. (d) Comparison of CO2 photocatalysis production using Cu NCs@MOF-801 and Cu NCs@UiO-66-NH2 against control experiments. Reprinted with permission from Ref. [141]. Copyright 2022, John Wiley and Sons.
Fig. 15. (a) High-resolution transmission electron microscopy (HRTEM) analysis of Au/MOF-808-SH (the inset shows crystalline Au nanoparticles). (b) Size distribution of Au nanoparticles in Au/MOF-808-SH. (c) Molecular structure of MOF-808-SH. (d) LEIS spectra of Au/MOF-808-SH before and after sputtering (4 × 1014 cm?2 Ar+ ions). Reprinted with permission from Ref. [145]. Copyright 2019, Royal Society of Chemistry.
Fig. 16. (a) Proposed mechanism of the photocatalysis over MIL-125/Ag/g-C3N4. Reprinted with permission from Ref. [148]. Copyright 2017, Elsevier. (b) Cu2O@Cu@UiO-66-NH2 photocatalytic mechanism of CO2. Reprinted with permission from Ref. [149]. Copyright 2020, American Chemical Society.
Fig. 17. (a) Mechanism diagram of CO2 hydrogenation catalyzed by MOF-525-Co. Reprinted with permission from Ref. [151]. Copyright 2016, John Wiley and Sons. (b) Mechanism diagram of CO2 photocatalytic hydrogenation of Cu SAs/UiO-66-NH2. (c) Synthesis process of the Cu SAs/UiO-66-NH2 photocatalyst. Reprinted with permission from Ref. [152]. Copyright 2020, American Chemical Society.
Fig. 19. (a) Energy schematic depicting the thermal catalytic reaction process. Ea1, Ea2, and Ea3 represent the activation energy for reactants and intermediates at various stages of CO2 hydrogenation. The continuous and dashed lines depict the reaction progression in the absence and presence of a catalyst, respectively. Reprinted with permission from Ref. [155]. Copyright 2020, John Wiley and Sons. (b) Four primary outcomes from thermal catalytic CO2 hydrogenation reactions. Reprinted with permission from Ref. [156]. Copyright 2021, John Wiley and Sons.
Fig. 20. (a) A schematic illustration of the synthesis of PdAg/TiO2@ZIF-8. (b) DFT-optimized configurations for dissociated H atoms and HCO3? ions adsorbed on PdAg (111) and PdAg (111) with the ZIF-8 framework (showing two 2-methylimidazole molecules bonded to a Zn2+ ion) in two different configurations. Reprinted with permission from Ref. [157]. Copyright 2020, American Chemical Society.
Fig. 21. (a) Hypothetical process of cycloaddition between CO2 and epoxides facilitated by CZ‐BDO. (b) Impact of varying reaction duration on conversion and specificity. Reprinted with permission from Ref. [164]. Copyright 2020, Royal Society of Chemistry.
Fig. 22. (a) Diagram depicting the fabrication process of hierarchically porous mesoCu@Al‐bpydc. (b) Comparative catalytic activity of microCu@Al‐bpydc and mesoCu@Al‐bpydc with various epoxides. Reprinted with permission from Ref. [168]. Copyright 2019, John Wiley and Sons.
Fig. 23. (a) TOFs for product generation using Cu?UiO-66 and Cu/ZnO/Al2O3 catalysts at varying reaction temperatures. (b) Initial methanol TOFs comparing Cu?UiO-66 and Cu supported on UiO-66. Reprinted with permission from Ref. [171]. Copyright 2016, American Chemical Society. (c) Stability tests over 10Ni@MOF-5 catalyst for 100 h. Reprinted with permission from Ref. [173]. Copyright 2015, Royal Society of Chemistry. (d) Catalytic outcomes of various M@CMOF-74 catalysts at 750 °C, 5 bar pressure, and a flow rate of 18 L h?1 g?1. Reprinted with permission from Ref. [175]. Copyright 2020, MDPI.
Fig. 24. (a) Schematic illustration of composite pathway at Ni@C/MCF-T. (b) CO2 conversion performance. Reprinted with permission from Ref. [179]. Copyright 2023, Elsevier. (c) Diagram depicting the integration of silica nanofibrous veils as support for MIL-101 nanostructures loaded with Ru nanoparticles for catalyzing CO2 hydrogenation to CH4. Reprinted with permission from Ref. [180]. Copyright 2023, Elsevier. (d) Potential energy landscapes for CO2 hydrogenation to CH3OH on Cu(111) via the HCOO, trans-COOH, and water-enhanced trans-COOH mechanisms. Reprinted with permission from Ref. [183]. Copyright 2011, Elsevier.
Fig. 26. (a) The depiction of energetic carriers produced via nonradiative decay stemming from the LSPR phenomena. (b) Activation of bonds atop plasmonic metals, immediate transformation following absorption of plasmon energy from the metal via an indirect (c) and a direct (d) pathway, respectively. Reprinted with permission from Ref. [188]. Copyright 2018, Springer Nature.
Fig. 27. (a) Calculated free energy diagram for CO2 hydrogenation over Pt@UiO-66-NH2 (Co). (b) Redox potentials of various materials and redox potentials of CO2 reduction to products. Reprinted with permission from Ref. [189]. Copyright 2023, John Wiley and Sons.
Fig. 28. (a) diagram depicting the operational concept of plasmon-induced thermal catalysis for CO2 hydrogenation using AuPt@UiO- 66-NH2. (b) Rates of CO2 hydrogenation over AuPt@UiO-66-NH2 at 150 °C under varied light wavelengths for a duration of 4 h. (c) Relationship between reaction rates and temperature for AuPt@UiO-66-NH2; Reprinted with permission from Ref. [200]. Copyright 2022, John Wiley and Sons. (d) UV-visible absorption spectra of MIL-100 (Fe) and Ag/MIL-100 (Fe) with differing Ag loading levels. (e) Synthetic pathway for Ag/MIL-100 (Fe) and the photothermal conversion process of CO2. Reprinted with permission from Ref. [201]. Copyright 2021, Elsevier.
Fig. 29. (a) Product yields of Pt nanocubes, Pt@ZIF, Au&Pt@ZIF, and Pt@ZIF+Au in CO2 hydrogenation at 150 °C for 3 h. (b) Yield comparison of products from Au&Pt@ZIF under light and dark conditions at various temperatures for 3 h. Reprinted with permission from Ref. [203]. Copyright 2016, John Wiley and Sons. (c) Diagram illustrating the synthesis process of Au@Pd@UiO-66-NH2. (d) Rates of CO production using Au@Pd@UiO-66-NH2-0.5 at different temperatures with light exposure. High-speed TA spectroscopy (e) and temporal evolution of TA signals in kinetic curves (f) of Au@Pd-0.5. (g) Schematic representation of light-induced CO2 hydrogenation over Au@Pd@UiO-66-NH2-0.5. Reprinted with permission from Ref. [39]. Copyright 2021, Elsevier.
|
[1] | 张淼, 张莉民, 王明瑞, 张光辉, 宋春山, 郭新闻. 石墨烯层包覆铁钴合金的电子相互作用促进CO2高效加氢制低碳烯烃[J]. 催化学报, 2025, 68(1): 366-375. |
[2] | Sam Van Minnebruggen, Ka Yan Cheung, Trees De Baerdemaeker, Niels Van Velthoven, Matthias Degelin, Galahad O’Rourke, Hiroto Toyoda, Andree Iemhoff, Imke Muller, Andrei-Nicolae Parvulescu, Torsten Mattke, Jens Ferbitz, 吴勤明, 肖丰收, Toshiyuki Yokoi, Nils Bottke, Dirk De Vos. 利用择形分子筛异构化亚甲基二苯胺[J]. 催化学报, 2024, 62(7): 124-130. |
[3] | 侯现飚, 于辰, 倪腾嘉, 张树聪, 周健, 代水星, 初蕾, 黄明华. 构筑非晶/晶体NiFe-MOF@NiS异质结构催化剂增强大电流密度下水/海水氧化[J]. 催化学报, 2024, 61(6): 192-204. |
[4] | 张晓敏, 蔡凯, 李媖, 戚暨, 王悦, 刘云铎, 王美岩, 黄守莹, 马新宾. SSZ-13分子筛在二甲醚羰基化反应中的机理研究和空间限域效应[J]. 催化学报, 2024, 61(6): 301-311. |
[5] | 丁婕婷, 王浩帆, 沈葵, 韦小明, 陈立宇, 李映伟. 具有丰富活性位点和高电子传导性的非晶MOF用于高效肼氧化[J]. 催化学报, 2024, 60(5): 351-359. |
[6] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[7] | 杨婷婷, 王彬, 朱剑豪, 夏杰祥, 李华明. 自牺牲型金属有机框架衍生In2S3多级孔结构纳米材料强化光催化性能[J]. 催化学报, 2024, 59(4): 204-213. |
[8] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面I: 再分散过程和机制[J]. 催化学报, 2024, 58(3): 237-246. |
[9] | 杜晓蕊, 黄一珂, 潘晓丽, 江训柱, 苏杨, 杨静怡, 郭亚琳, 韩冰, 文承彦, 王晨光, 乔波涛. “自上而下”构筑TiO2与Pt纳米簇之间的活性界面II: 催化一氧化碳氧化反应性能和机理[J]. 催化学报, 2024, 58(3): 247-254. |
[10] | 曾冰, 黄凤伟, 王月欣, 熊康慧, 郎贤军. TEMPO显著加速芘基金属有机框架光催化硫化物到亚砜的转化[J]. 催化学报, 2024, 58(3): 226-236. |
[11] | 党健, 李玮杰, 秦斌, 柴玉超, 武光军, 李兰冬. 分子筛限域单位点钴体系催化芳香族化合物C-H键自调节高效氧化[J]. 催化学报, 2024, 57(2): 133-142. |
[12] | 杨艳玲, 韩沛杰, 张元宝, 林敬东, 万绍隆, 王勇, 刘海超, 王帅. 用于间甲酚高效加氢脱氧制芳烃的负载型W2C纳米催化剂的活性位研究[J]. 催化学报, 2024, 67(12): 91-101. |
[13] | 郭英杰, 李世龙, 王竞洋, 石磊, 刘迪, 赵慎龙. 非衍生金属有机框架纳米片电解水催化剂: 基础理论、调控策略和最新进展[J]. 催化学报, 2024, 67(12): 21-53. |
[14] | 佛雨萌, 宋少佳, 杨坤, 纪向阳, 杨璐源, 黄刘赛, 陈欣宇, 吴学秋, 刘坚, 赵震, 宋卫余. 从头算分子动力学模拟揭示熵效应对Co@BEA分子筛催化乙烷脱氢反应的影响[J]. 催化学报, 2024, 65(10): 195-205. |
[15] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||