催化学报 ›› 2025, Vol. 68: 155-176.DOI: 10.1016/S1872-2067(24)60162-2

• 综述 • 上一篇    下一篇

高温质子交换膜燃料电池阴极抗磷酸中毒催化剂的研究进展

贡立圆a,b,c, 陶李c,d,*(), 王雷a, 符显珠a,*(), 王双印c,d,*()   

  1. a深圳大学材料科学与工程学院, 广东深圳 518055
    b深圳大学物理与光电工程学院, 广东深圳 518060
    c湖南大学化学生物传感与计量学国家重点实验室, 化学化工学院, 长沙国家超算中心, 先进催化教育部工程研究中心, 湖南长沙 410082
    d湖大粤港澳大湾区创新研究院(广州增城), 广东广州 511300
  • 收稿日期:2024-08-16 接受日期:2024-10-08 出版日期:2025-01-18 发布日期:2025-01-02
  • 通讯作者: * 电子信箱: taoli@hnu.edu.cn (陶李), xz.fu@szu.edu.cn (符显珠), shuangyinwang@hnu.edu.cn (王双印).
  • 基金资助:
    国家重点研发计划(2021YFA1500900);国家自然科学基金(22425021);国家自然科学基金(22102053);湖南省自然科学基金(2024JJ2012);湖南省科技创新项目(2022RC1036);广东基础和应用基础研究基金(2024A1515012889);深圳科技项目(JCYJ20210324122209025);湖南省自然科学基金重大项目(2021JC0006)

Focus on the catalysts to resist the phosphate poisoning in high-temperature proton exchange membrane fuel cells

Liyuan Gonga,b,c, Li Taoc,d,*(), Lei Wanga, Xian-Zhu Fua,*(), Shuangyin Wangc,d,*()   

  1. aCollege of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, Guangdong, China
    bCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
    cState Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, Hunan, China
    dGreater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, China
  • Received:2024-08-16 Accepted:2024-10-08 Online:2025-01-18 Published:2025-01-02
  • Contact: * E-mail: taoli@hnu.edu.cn (L. Tao), xz.fu@szu.edu.cn (X. Fu), shuangyinwang@hnu.edu.cn (S. Wang).
  • About author:Li Tao received his Master degree in 2016 and his Ph.D. degree in 2019 from Hunan University under the supervision of Prof. Shuangyin Wang. He is currently an associate professor of the College of Chemistry and Chemical Engineering, Hunan University. His research interests are in thermoelectric coupling catalysis, defect chemistry and fuel cell.
    Xian-Zhu Fu is currently a professor in the college of Materials Science and Engineering, Shenzhen University. He received his Ph.D. degree in Chemistry from Xiamen University in 2007. Then he joined the Department of Materials and Chemical Engineering at University of Alberta in Canada as a post-doctoral research flow and Lawrence Berkeley National Lab as a visiting scholar. From 2012-2017, he worked at the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. His research interests focus on electrochemistry/electrocatalysts for energy materials and devices, electronic materials and process.
    Shuangyin Wang received his bachelor’s degree in 2006 from Zhejiang University and his Ph.D. in 2010 from Nanyang Technological University, Singapore. He is currently a Professor of the Key Laboratory for Graphene Materials and Devices and College of Chemistry and Chemical Engineering, Hunan University. His research interests are defect chemistry of electrocatalysts, HT-PEMFCs, and electrosynthesis.
  • Supported by:
    National Key R&D Program of China(2021YFA1500900);National Natural Science Foundation of China(22425021);National Natural Science Foundation of China(22102053);Provincial Natural Science Foundation of Hunan(2024JJ2012);Science and Technology Innovation Program of Hunan Province(2022RC1036);Guangdong Basic and Applied Basic Research Foundation(2024A1515012889);Shenzhen Science and technology program(JCYJ20210324122209025);Major Program of the Natural Science Foundation of Hunan Province(2021JC0006)

摘要:

燃料电池作为一种清洁、高效的电化学能源转换器件, 能量转换效率高, 是未来氢能应用的主要途径之一. 高温聚合物电解质膜燃料电池(HT-PEMFC)工作温度为120‒300 °C, 具有水、热管理系统简单, 反应动力学速率快, 抗CO等杂质中毒等优点. HT-PEMFC更加简化的系统和对高纯氢的低依赖度等诸多优势将有望突破传统PEMFC应用瓶颈, 推动燃料电池和氢能的发展. 目前, HT-PEMFC主要以磷酸掺杂的聚合物膜作为电解质, 磷酸在催化剂表面的强吸附会堵塞催化剂活性位点, 导致铂用量是目前低温PEMFC的10倍, 增加了燃料电池的实际应用成本. 目前, 对HT-PEMFC抗磷酸毒化催化剂的研究较少, 缺乏对毒化机制的科学认识. 因此, 对抗磷酸毒化催化材料研究的最新进展进行系统地梳理和总结对进一步推动HT-PEMFC的发展具有重要意义.
本文综述了磷酸掺杂聚苯并咪唑(PBI)电解质膜应用的HT-PEMFC中磷酸阴离子严重吸附和毒害阴极催化剂的瓶颈问题. 首先介绍了催化剂磷酸中毒的基本原理, 为针对性地解决抗中毒问题提供深入的理论根据. 此外, 由于催化剂表界面发生的磷酸阴离子吸附/脱附行为至关重要, 因此对相关的表征技术进行了系统地归纳总结. 其次, 重点介绍了铂基电催化剂的研究进展, 详细地阐述了目前的抗磷酸中毒策略包括晶面调控策略、合金策略、有机物小分子隔离策略、碳/氧化物包覆策略以及磷酸分布迁移调控策略, 并且介绍了一些成功的典型实例, 对目前优越的电池性能进行了总结. 另外强调了具有磷酸中毒免疫能力的铁基材料的重要性, 用以取代易中毒且昂贵的铂基材料, 是目前最具有应用潜力的非贵金属催化剂. 介绍了铁基催化剂近年在HT-PEMFC抗毒化研究的成功研究案例: 包括(1)对抗磷酸阴离子吸附的位点构型探究, 通过对几何/电子结构进行构建实现更高的抗磷酸毒化能力和本征活性; (2)对位点密度和可利用性的提升研究, 通常铁基催化剂为金属单原子位点锚定于碳基底, 而单原子位点的密度通常低于2%且大部分嵌入碳层深处, 因此位点密度提升及孔结构构建对于位点利用率至关重要.
综上, 本综述系统地总结了HT-PEMFC阴极抗磷酸毒化催化剂的研究进展、抗毒化策略和机理以及具体应用. 未来, 需要继续发展抗磷酸毒化的铂基材料, 并持续加强开发新型非贵金属催化剂, 最终真正获得经济高效实用的HT-PEMFC. 此外, 对于抗毒化机制的研究仍然需要大力加强, 包括开发更先进的原位表征手段, 深入研究抗毒化催化剂的性质和作用机理. 本文为开发高效的抗毒化催化剂提供参考, 最终推动高温燃料电池的实际应用.

关键词: 燃料电池, 高温, 磷酸中毒, 活性衰减, 电催化剂设计

Abstract:

Investigating highly effective electrocatalysts for high-temperature proton exchange membrane fuel cells (HT-PEMFC) requires the resistance to phosphate acid (PA) poisoning at cathodic oxygen reduction reaction (ORR). Recent advancements in catalysts have focused on alleviating phosphoric anion adsorption on Pt-based catalysts with modified electronic structure or catalytic interface and developing Fe-N-C based catalysts with immunity of PA poisoning. Fe-N-C-based catalysts have emerged as promising alternatives to Pt-based catalysts, offering significant potential to overcome the characteristic adsorption of phosphate anion on Pt. An overview of these developments provides insights into catalytic mechanisms and facilitates the design of more efficient catalysts. This review begins with an exploration of basic poisoning principles, followed by a critical summary of characterization techniques employed to identified the underlying mechanism of poisoning effect. Attention is then directed to endeavors aimed at enhancing the HT-PEMFC performance by well-designed catalysts. Finally, the opportunities and challenges in developing the anti-PA poisoning strategy and practical HT-PEMFC is discussed. Through these discussions, a comprehensive understanding of PA-poisoning bottlenecks and inspire future research directions is aim to provided.

Key words: Fuel cell, High-temperature, Phosphate acid poisoning, Activity degradation, Electrocatalyst design