催化学报 ›› 2011, Vol. 32 ›› Issue (8): 1418-1423.DOI: 10.3724/SP.J.1088.2011.01020

• 研究论文 • 上一篇    下一篇

氮掺杂碳纳米管对其负载的 Ru 催化剂上合成氨的促进作用

高伟洁, 郭淑静, 张洪波, 潘秀莲a, 包信和b   

  1. 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2010-10-14 修回日期:2011-05-27 出版日期:2011-08-05 发布日期:2014-12-26

Enhanced Ammonia Synthesis Activity of Ru Supported on Nitrogen-Doped Carbon Nanotubes

GAO Weijie, GUO Shujing, ZHANG Hongbo, PAN Xiuliana, BAO Xinheb   

  1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2010-10-14 Revised:2011-05-27 Online:2011-08-05 Published:2014-12-26

摘要: 以乙腈为碳源和氮源, 采用化学气相沉积法制备了氮掺杂的碳纳米管. 电子显微镜观察表明, 样品形貌为中空的多壁纳米管, 管腔大小 10~15 nm, 壁厚 10~20 nm. X 射线光电子能谱结果表明, 氮已掺杂到碳纳米管结构中, 主要以吡啶型氮和取代型氮存在. 结合 X 射线衍射和拉曼光谱结果发现, 随着制备温度的升高, 氮掺杂量减少, 但纳米管的石墨化程度提高. 与未掺杂碳纳米管相比, 氮掺杂碳纳米管负载的 Ru 催化剂上催化合成氨反应活性增加, 于 650 oC 制得的掺氮碳纳米管负载的 Ru 催化剂活性相对最高, 这可能是由于载体中氮掺杂和管壁石墨化的综合作用所致.

关键词: 化学气相沉积, 氮掺杂, 合成氨, 钌, 碳纳米管

Abstract: Nitrogen-doped carbon nanotubes (NCNTs) were synthesized via chemical vapor deposition using acetonitrile as the carbon and nitrogen sources. Transmission electron microscopic characterization showed clearly tubular morphology of NCNTs with inner diameter of 10–15 nm and wall thickness of 10–20 nm. X-ray photoelectron spectroscopy (XPS) indicated that nitrogen species were incorporated into CNTs and the predominating type of nitrogen species were pyridinic and quaternary nitrogen. XPS, X-ray diffraction, and Raman spectroscopy showed that with increasing temperature the total amount of nitrogen species decreased but the nanotubes were better graphitized. Ru supported on NCNTs exhibited an obviously enhanced activity in ammonia synthesis as compared with the CNT-supported Ru catalyst. In particular, in the temperature range of 550~750 oC, the NCNTs obtained at 650 °C after deposition of Ru yielded a better activity, which was most likely attributed to the promoting effect of nitrogen doping and the graphitization of nanotubes.

Key words: chemical vapor deposition, nitrogen-doped, carbon nanotube, ammonia synthesis, ruthenium