催化学报 ›› 2013, Vol. 34 ›› Issue (9): 1705-1711.DOI: 10.1016/S1872-2067(12)60642-1

• 研究论文 • 上一篇    下一篇

Cu-ZnO催化剂上水活化的第一性原理研究

姚锟, 王莎莎, 顾向奎, 苏海燕, 李微雪   

  1. 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2013-03-30 修回日期:2013-06-17 出版日期:2013-09-16 发布日期:2013-08-28
  • 通讯作者: 李微雪
  • 基金资助:

    国家自然科学基金(21225315, 21173210, 21103164); 国家重点基础研究发展计划(973计划, 2013CB834603).

First-principles study of water activation on Cu-ZnO catalysts

Kun Yao, Sha-Sha Wang, Xiang-Kui Gu, Hai-Yan Su, Wei-Xue Li   

  1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2013-03-30 Revised:2013-06-17 Online:2013-09-16 Published:2013-08-28
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21225315, 21173210, 21103164) and the National Basic Research Program of China (973 Program, 2013CB834603).

摘要:

采用密度泛函理论计算研究了水在Cu-ZnO催化剂表面上不同位点的解离过程. 结果发现, 水在纯Cu密堆积面和台阶面解离能垒都较高; 而在负载的ZnO薄膜上, 由于水解离过程能垒较低并且反应约为热中性, 水将会在表面上部分解离并达到动力学平衡. Cu-ZnO界面被确定为水解离的活性中心. 水解离后产生的H原子和羟基均可以较大吸附能吸附在界面处, 并且界面处的类似台阶结构大大降低了解离能垒, 从而使得水的解离可自发进行. 另外, H原子和羟基在ZnO薄膜表面可以较低的能垒扩散, 因此水解离活性位点可以持续催化后续解离过程. 该结果深化了对水在Cu-ZnO催化剂表面活化过程的认识.

关键词: 水解离, 密度泛函理论, 铜-氧化锌催化剂, 界面, 扩散

Abstract:

Although many water-related catalytic reactions on Cu-ZnO catalysts, such as methanol steam reforming and water gas shift, have been extensively investigated, little is known about water dissociation on Cu-ZnO catalysts. To reveal the active center for water dissociation on Cu-ZnO catalysts, we performed density functional theory calculations on various domains of Cu-ZnO catalysts, including Cu surfaces, supported ZnO films, and Cu-ZnO interfaces. It is found that water dissociation is hindered by a relatively large energy barrier on both the planar and the stepped Cu surfaces. On supported ZnO films, the barrier of water dissociation is significantly lowered compared with the Cu surfaces and the reaction is essentially thermo-neutral, thus the dissociation reaction will easily reach a state of dynamic equilibrium and dissociative and molecular water can coexist on the film. At the Cu-ZnO interface, water dissociation is exothermic and proceeds essentially without an energy barrier. The enhanced activity of the Cu-ZnO interface is due to the strong adsorption of both the H atom and hydroxyl group, and the step-like structure at the interface. The low energy barrier of hydroxyl diffusion and water-assisted hydrogen diffusion on ZnO films allows water dissociation to occur continuously at the interface. This work highlights the unique role of the Cu-ZnO interface in water dissociation on Cu-ZnO catalysts.

Key words: Water dissociation, Density functional theory, Copper-zinc oxide catalyst, Interface, Diffusion