催化学报 ›› 2014, Vol. 35 ›› Issue (10): 1591-1608.DOI: 10.1016/S1872-2067(14)60082-6
吴自力
收稿日期:
2014-04-28
修回日期:
2014-05-22
出版日期:
2014-09-28
发布日期:
2014-09-30
通讯作者:
吴自力
基金资助:
本研究工作是在美国橡树岭国家实验室的纳米材料研究中心进行的,该中心由美国能源部下属的基础能源科学部的科学用户设施处资助. 其中纳米形状CeO2的合成工作是由能源部的科学办公室下属基础能源科学部的化学,地理和生物科学处资助的.
Zili Wu
Received:
2014-04-28
Revised:
2014-05-22
Online:
2014-09-28
Published:
2014-09-30
Supported by:
This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Part of the work including the synthesis of ceria nanoshapes was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.
摘要:
探究负载金属氧化物的结构是确立催化剂结构和催化性能之间相互关系的首要条件. 在众多表征技术中,多波长拉曼光谱结合了共振拉曼和由不同波长激发的非共振拉曼,不仅在识别负载金属氧化物团簇的结构,而且在定量方面已经成为强有力的工具. 本文以两个负载氧化钒体系(VOx/SiO2,VOx/CeO2)为例,阐述了如何利用该技术研究活性氧化物团簇的多相结构,并理解氧化物团簇和载体之间复杂的相互作用. 由多波长拉曼光谱得到的定性和定量信息能为设计更有效的负载金属氧化物催化剂提供基本的依据.
吴自力. 负载氧化钒催化剂的多波长拉曼光谱研究:结构识别和定量[J]. 催化学报, 2014, 35(10): 1591-1608.
Zili Wu. Multi-wavelength Raman spectroscopy study of supported vanadia catalysts:Structure identification and quantification[J]. Chinese Journal of Catalysis, 2014, 35(10): 1591-1608.
[1] Banares M A, Wach I E. J Raman Spectr, 2002, 33: 359 [2] Wachs I E, Roberts C A. Chem Soc Rev, 2010, 39: 5002 [3] Banares M A, Mestl G. Adv Catal, 2009, 52: 43 [4] Stavitski E, Weckhuysen B M. Chem Soc Rev, 2010, 39: 4615 [5] Kim H, Kosuda K M, Van Duyne R P, Stair P C. Chem Soc Rev, 2010, 39: 4820 [6] Wu Z L, Kim H S, Stair P C, Rugmini S, Jackson S D. J Phys Chem B, 2005, 109: 2793 [7] Kim H S, Zygmunt S A, Stair P C, Zapol P, Curtiss L A. J Phys Chem C, 2009, 113: 8836 [8] Kim H S, Stair P C. J Phys Chem A, 2009, 113: 4346 [9] Xiong G, Feng Z C, Li J, Yang Q H, Ying P L, Xin Q, Li C. J Phys Chem B, 2000, 104: 3581 [10] Li M J, Feng Z H, Xiong G, Ying P L, Xin Q, Li C. J Phys Chem B, 2001, 105: 8107 [11] Li C, Xiong G, Xin Q, Liu J K, Ying P L, Feng Z C, Li J, Yang W B, Wang Y Z, Wang G R, Liu X Y, Lin M, Wang X Q, Min E Z. Angew Chem Int Ed, 1999, 38: 2220 [12] Stair P C. Adv Catal, 2007, 51: 75 [13] Fan F T, Feng Z C, Li C. Acc Chem Res, 2010, 43: 378 [14] Wang J Y, Li G N, Ju X H, Xia H A, Fan F T, Wang J H, Feng Z C, Li C. J Catal, 2013, 301: 77 [15] Guo Q, Sun K J, Feng Z C, Li G N, Guo M L, Fan F T, Li C. Chem Eur J, 2012, 18: 13854 [16] Jin S Q, Guo M L, Fan F T, Yang J X, Zhang Y, Huang B K, Feng Z C, Li C. J Raman Spectr, 2013, 44: 266 [17] Kim H, Ferguson G A, Cheng L, Zygmunt S A, Stair P C, Curtiss L A. J Phys Chem C, 2012, 116: 2927 [18] López I, Ertem M Z, Maji S, Benet-Buchholz J, Keidel A, Kuhlmann U, Hildebrandt P, Cramer C J, Batista V S, Llobet A. Angew Chem Int Ed, 2014, 53: 205 [19] Woertink J S, Smeets P J, Groothaert M H, Vance M A, Sels B F, Schoonheydt R A, Solomon E I. PNAS, 2009, 106: 18908 [20] Nitsche D, Hess C. J Raman Spectr, 2013, 44: 1733 [21] Wu Z L, Kim H-S, Stair P C. In: Hargraves J S J, Jackson S D eds. Metal Oxide Catalysis, 2008. 177 [22] Launay H, Loridant S, Pigamo A, Dubois J L, Millet J M M. J Catal, 2007, 246: 390 [23] Sun Q, Jehng J M, Hu H C, Herman R G, Wachs I E, Klie K. J Catal, 1997, 165: 91 [24] Banares M A, Cardoso J H, Agullo-Rueda F, Correa-Bueno J M, Fierro J L G. Catal Lett, 2000, 64: 191 [25] Weckhuysen B M, Kelle D E. Catal Today, 2003, 78: 25 [26] Wachs I E. Dalton Trans, 2013, 42: 11762 [27] Wu Z L, Dai S, Overbury S H. J Phys Chem C, 2010, 114: 412 [28] Wu Z L, Li M J, Overbury S H. ChemCatChem, 2012, 4: 1653 [29] Wu Z L, Schwartz V, Li M, Rondinone A J, Overbury S H. J Phys Chem Lett, 2012, 3: 1517 [30] Wu Z L, Rondinone A J, Ivanov I N, Overbury S H. J Phys Chem C, 2011, 115: 25368 [31] Gao X T, Bare S R, Weckhuysen B M, Wachs I E. J Phys Chem B, 1998, 102: 10842 [32] Xie S B, Iglesia E, Bell A T. Langmuir, 2000, 16: 7162 [33] Wang C B, Deo G, Wachs I E. J Catal, 1998, 178: 640 [34] Jehng J M, Hu H C, Gao X T, Wachs I E. Catal Today, 1996, 28: 335 [35] Das N, Eckert H, Hu H C, Wachs I E, Walzer J F, Feher F J. J Phys Chem, 1993, 97: 8240 [36] Lee E L, Wachs I E. J Phys Chem C, 2007, 111: 14410 [37] Dinse A, Ozarowski A, Hess C, Schomacker R, Dinse K P. J Phys Chem C, 2008, 112: 17664 [38] Wachs I E, Weckhuysen B M. Appl Catal A, 1997, 157: 67 [39] Keller D E, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2006, 110: 14313 [40] Liu Y M, Cao Y, Yi N, Feng W L, Dai W L, Yan S R, He H Y, Fan K N. J Catal, 2004, 224: 417 [41] Khodakov A, Olthof B, Bell A T, Iglesia E. J Catal, 1999, 181: 205 [42] Magg N, Immaraporn B, Giorgi J B, Schroeder T, Baumer M, Dobler J, Wu Z L, Kondratenko E, Cherian M, Baerns M, Stair P C, Sauer J, Freund H J. J Catal, 2004, 226: 88 [43] Gijzeman O L J, van Lingen J N J, van Lenthe J H, Tinnemans S J, Keller D E, Weckhuysen B M. Chem Phys Lett, 2004, 397: 277 [44] van Lingen J N J, Gijzerman O L J, Weckhuysen B M, van Lenthe J H. J Catal, 2006, 239: 34 [45] Keller D E, Visser T, Soulimani F, Koningsberger D C, Weckhuysen B M. Vib Spectr, 2007, 43: 140 [46] Moisii C, van de Burgt L J, Stiegman A E. Chem Mater, 2008, 20: 3927 [47] Moisii C, Curran M D, van de Burgt L J, Stiegman A E. J Mater Chem, 2005,15: 3519 [48] Lee E L, Wachs I E. J Phys Chem C, 2008, 112: 6487 [49] Guimond S, Abu Haija M, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S, Kuhlenbeck H, Freund H J, Dobler J, Sauer J. Top Catal, 2006, 38: 117 [50] Lewandowska A E, Banares M A, Tielens F, Che M, Dzwigaj S. J Phys Chem C, 2010, 114: 19771 [51] Chlosta R, Tzolova-Muller G, Schlogl R, Hess C. Catal Sci Technol, 2011,1: 1175 [52] van Lingen J N J, Gijzeman O L J, Havenith R W A, van Lenthe J H. J Phys Chem C, 2007, 111: 7071 [53] Islam M M, Costa D, Calatayud M, Tielens F. J Phys Chem C, 2009, 113: 10740 [54] Ohde C, Brandt M, Limberg C, Doebler J, Ziemer B, Sauer J. Dalton Trans, 2008: 326 [55] Todorova T K, Dobler J, Sierka M, Sauer J. J Phys Chem C, 2009, 113: 8336 [56] Döbler J, Pritzsche M, Sauer J. J Phys Chem C, 2009, 113: 12454 [57] Burcham L J, Deo G, Gao X T, Wachs I E. Top Catal, 2000, 11: 85 [58] Keller D E, de Groot F M F, Koningsberger D C, Weckhuysen B M. J Phys Chem B, 2005, 109: 10223 [59] Molinari J E, Wachs I E. J Am Chem Soc, 2010, 132: 12559 [60] Cavalleri M, Hermann K, Knop-Gericke A, Havecker M, Herbert R, Hess C, Oestereich A, Dobler J, Schlogl R. J Catal, 2009, 262: 215 [61] H?vecker M, Cavalleri M, Herbert R, Follath R, Knop-Gericke A, Hess C, Hermann K, Schl?gl R. Phys Status Solidi B, 2009, 246: 1459 [62] Bulanek R, Capek L, Setnicka M, Cicmanec P. J Phys Chem C, 2011, 115: 12430 [63] Galeener F L, Mikkelsen J C. Phys Rev B, 1981, 23: 5527 [64] Gao X T, Wachs I E. J Phys Chem B, 2000,104: 1261 [65] Tian H J, Ross E I, Wachs I E. J Phys Chem B, 2006, 110: 9593 [66] Albrecht A C. J Chem Phys, 1961, 34: 1476 [67] Koningstein J A. J Mol Spectr, 1968, 28: 309 [68] Tang J, Albrecht A C. In: Szymanski H A ed. Raman Spectroscopy. New York: Plenum, 1970. 33 [69] Clark R J H, Stewart B. In: Inorganic Chemistry and Spectroscopy. Berlin: Springer Berlin Heidelberg, 1979, 36: 1 [70] Long D A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. New York: Wiley, 2002. 1 [71] Cotton F A, Wing R M. Inorg Chem, 1965, 4: 867 [72] Wu Z L, Zhang C, Stair P C. Catal Today, 2006, 113: 40 [73] Wu Z, Stair P C, Rugmini S, Jackson S D. J Phys Chem C, 2007, 111: 16460 [74] Gao X T, Banares M A, Wachs I E. J Catal, 1999, 188: 325 [75] Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Knoezinger H. Top Catal, 2002, 20: 65 [76] Martinez-Huerta M V, Coronado J M, Fernandez-Garcia M, Iglesias-Juez A, Deo G, Fierro J L G, Banares M A. J Catal, 2004, 225: 240 [77] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2007, 111: 18708 [78] Martinez-Huerta M V, Deo G, Fierro J L G, Banares M A. J Phys Chem C, 2008, 112: 11441 [79] Ganduglia-Pirovano M V, Popa C, Sauer J, Abbott H, Uhl A, Baron M, Stacchiola D, Bondarchuk O, Shaikhutdinov S, Freund H J. J Am Chem Soc, 2010, 132: 2345 [80] Taylor M N, Carley A F, Davies T E, Taylor S H. Top Catal, 2009, 52: 1660 [81] Abbott H L, Uhl A, Baron M, Lei Y, Meyer R J, Stacchiola D J, Bondarchuk O, Shaikhutdinov S, Freund H J. J Catal, 2010, 272: 82 [82] Feng T, Vohs J M. J Catal, 2004, 221: 619 [83] Wong G S, Concepcion M R, Vohs J M. J Phys Chem B, 2002, 106: 6451 [84] Wu Y N, Guo M, Chen F, Luo M F. Acta Phys-Chim Sin, 2010, 26: 2417 [85] Matta J, Courcot D, Abi-Aad E, Aboukais A. Chem Mater, 2002, 14: 4118 [86] Jehng J M, Deo G, Weckhuysen B M, Wachs I E. J Mol Catal A, 1996, 110: 41 [87] Wachs I E, Jehng J M, Deo G, Weckhuysen B M, Guliants V V, Benziger J B, Sundaresan S. J Catal, 1997, 170: 75 [88] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162 [89] Banares M A, Martinez-Huerta M V, Gao X T, Wachs I E, Fierro J L G. Stud Surf Sci Catal, 2000, 130: 3125 [90] Burcham L J, Wachs I E. Catal Today, 1999, 49: 467 [91] Baron M, Abbott H, Bondarchuk O, Stacchiola D, Uhl A, Shaikhutdinov S, Freund H J, Popa C, Ganduglia-Pirovano M V, Sauer J. Angew Chem Int Ed, 2009, 48: 8006 [92] Popa C, Ganduglia-Pirovano M V, Sauer J. J Phys Chem C, 2011, 115: 7399 [93] Shapovalov V, Metiu H. J Phys Chem C, 2007, 111: 14179 [94] Qiao Z A, Wu Z L, Dai S. ChemSusChem, 2013, 6: 1821 [95] Wu Z L, Li M J, Howe J, Meyer H M, Overbury S H. Langmuir, 2010, 26: 16595 [96] Taniguchi T, Watanabe T, Sugiyama N, Subramani A K, Wagata H, Matsushita N, Yoshimura M. J Phys Chem C, 2009, 113: 19789 [97] Guo M, Lu J Q, Wu Y N, Wang Y J, Luo M F. Langmuir, 2011, 27: 3872 [98] Li L, Chen F, Lu J Q, Luo M F. J Phys Chem A, 2011, 115: 7972 [99] Li L, Hu G S, Lu J Q, Luo M F. Acta Phys-Chim Sin, 2012, 28: 1012 [100] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. J Catal, 2005, 229: 206 [101] Mai H X, Sun L D, Zhang Y W, Si R, Feng W, Zhang H P, Liu H C, Yan C H. J Phys Chem B, 2005, 109: 24380 [102] Trovarelli A. Catal Rev-Sci Eng, 1996, 38: 439 [103] Pushkarev V V, Kovalchuk V I, d'Itri J L. J Phys Chem B, 2004, 108: 5341 [104] Li C, Domen K, Maruya K, Onishi T. J Am Chem Soc, 1989, 111: 7683 [105] Banares M A. Adv Mater, 2011, 23: 5293 [106] Nolan M, Fearon J E, Watson G W. Solid State Ionics, 2006, 177: 3069 [107] Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W. Surf Sci, 2005, 576: 217 [108] Wu Z L, Li M J, Overbury S H. J Catal, 2012, 285: 61 |
[1] | 谢起贤, 任丹, 柏力晨, 格日乐, 周雯慧, 白璐, 谢微, 王军虎, Michael Grätzel, 罗景山. 镍铁层状双金属氢氧化物在不同pH电解液体系中的析氧反应[J]. 催化学报, 2023, 44(1): 127-138. |
[2] | 王冶, 韩晶峰, 王男, 李冰, 杨淼, 吴一墨, 江子潇, 魏迎旭, 田鹏, 刘中民. SAPO-14催化的甲醇制丙烯反应: 反应机理与失活[J]. 催化学报, 2022, 43(8): 2259-2269. |
[3] | 覃思纳, 魏笛野, 魏杰, 林嘉盛, 陈清奇, 吴元菲, 金怀洲, 张华, 李剑锋. 表面增强拉曼光谱原位捕获Pt-NiO界面水煤气变换反应中的碳酸盐中间物种[J]. 催化学报, 2022, 43(8): 2010-2016. |
[4] | 何铭, 徐冰君, 陆奇. 结合原位拉曼光谱与反应性研究锡与氧化锡催化剂电催化二氧化碳还原中表面物种的作用[J]. 催化学报, 2022, 43(6): 1473-1477. |
[5] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[6] | 吴丽文, 黄茉莉, 杨云霄, 黄逸凡. 金属/聚电解质界面的原位电化学表面增强拉曼光谱[J]. 催化学报, 2022, 43(11): 2820-2825. |
[7] | 陈亨权, 邹列, 魏笛野, 郑灵灵, 吴元菲, 张华, 李剑锋. 原位拉曼光谱与X射线吸收光谱研究能源转换电催化反应[J]. 催化学报, 2022, 43(1): 33-46. |
[8] | Sara Colussi, Paolo Fornasiero, Alessandro Trovarelli. Pd/CeO2甲烷氧化催化剂的构效关系[J]. 催化学报, 2020, 41(6): 938-950. |
[9] | James Kammert, Jisue Moon, Zili Wu. 二氧化铈与氢气之间相互作用及其在炔烃选择加氢中的应用[J]. 催化学报, 2020, 41(6): 901-914. |
[10] | 安静华, 王业红, 张志鑫, 张健, Martin Gocyla, Rafal E. Dunin-Borkowski, 王峰. Ru/CeO2催化剂催化苯乙烯氢甲氧基羰基化反应高选择性制备直链酯类化合物[J]. 催化学报, 2020, 41(6): 963-969. |
[11] | Md. Nurnobi Rashed, Abeda Sultana Touchy, Chandan Chaudhari, Jaewan Jeon, S. M. A. Hakim Siddiki, Takashi Toyao, Ken-ichi Shimizu. 多相CeO2催化剂上氧化吲哚与醛的选择性C3烯基化反应[J]. 催化学报, 2020, 41(6): 970-976. |
[12] | 陈增添, 肖钰雪, 张超, 伏再辉, 黄婷, 李庆锋, 姚远雄, 徐舒涛, 潘晓丽, 罗文豪, 李昌志. 温度调控二氧化硅隔离生物质碳纳米片构建固体超强酸[J]. 催化学报, 2020, 41(4): 698-709. |
[13] | 张娟, 褚月英, 刘小龙, 徐好, 冯兆池, 孟祥举, 肖丰收. 紫外拉曼光谱研究FAU到CHA和MFI分子筛的转晶过程[J]. 催化学报, 2019, 40(12): 1854-1859. |
[14] | Yamei Li, Ryuhei Nakamura. 原位Raman光谱揭示中性条件下硫化钼结构变化对其电催化析氢反应的促进作用[J]. 催化学报, 2018, 39(3): 401-406. |
[15] | 王凌翔, 王亮, 张建, 王海, 肖丰收. 通过CeOx修饰提高金纳米颗粒在CO氧化反应中的催化活性和耐久性[J]. 催化学报, 2018, 39(10): 1608-1614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||