催化学报 ›› 2021, Vol. 42 ›› Issue (12): 2254-2264.DOI: 10.1016/S1872-2067(20)63749-4

• 论文 • 上一篇    下一篇

MIL-88B(Fex, Co1‒x)催化剂制备及甲醇液相H2O2氧化一步合成甲酸甲酯

刘建芳, 冉真真, 曹琪岩, 季生福*()   

  1. 北京化工大学化工资源有效利用国家重点实验室, 北京100029
  • 收稿日期:2020-12-08 接受日期:2020-12-08 出版日期:2021-12-18 发布日期:2021-01-19
  • 通讯作者: 季生福
  • 基金资助:
    国家自然科学基金(21573015);国家自然科学基金(21872004)

Preparation of MIL-88B(Fex,Co1‒x) catalysts and their application in one-step liquid-phase methanol oxidation to methyl formate using H2O2

Jianfang Liu, Zhenzhen Ran, Qiyan Cao, Shengfu Ji*()   

  1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2020-12-08 Accepted:2020-12-08 Online:2021-12-18 Published:2021-01-19
  • Contact: Shengfu Ji
  • About author:* Tel/Fax: +86-10-64419619; E-mail: jisf@mail.buct.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21573015);National Natural Science Foundation of China(21872004)

摘要:

甲醇选择氧化合成甲酸甲酯是获得高附加值甲醇下游化学品的最具吸引力的催化反应工艺之一. 目前, 甲醇选择氧化的研究大多为气相催化反应, 存在反应温度较高和产物选择性较低的难题. 甲醇液相选择氧化过程的反应温度较低, 反应条件易于控制, 产物选择性相对较高. 然而, 以氧气作为氧化剂的甲醇液相选择氧化反应, 有时难以脱离反应体系的爆炸极限. 以H2O2为氧化剂的甲醇液相选择氧化反应, 可以在温和反应条件下实现甲醇催化选择氧化. 含Fe活性组分的催化剂对醇类液相选择氧化具有很好的催化性能, 金属有机框架材料(MOFs)在三维空间中具有均匀分布的酸位等催化活性位, 因此, 含Fe的MOFs催化剂是兼具有氧化还原活性和酸性的双功能催化剂, 并且引入另外一些催化活性组分时可以改善催化剂的反应性能. 本文以Fe3+和Co2+为金属离子, 通过简单的一锅水热法合成了一系列不同Fe/Co摩尔比的MIL-88B(Fex,Co1-x)双功能催化剂, 采用X射线粉末衍射、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、傅里叶变换红外光谱、X射线光电子能谱、氮气吸附-脱附和电感耦合等离子体质谱等手段表征了催化剂的结构, 研究了Fe和Co催化活性组分在甲醇液相选择氧化一步合成甲酸甲酯反应中的协同作用, 提出了甲醇液相H2O2氧化一步合成甲酸甲酯的可能催化反应机理.

SEM和HRTEM测试结果表明, MIL-88B(Fex, Co1-x)催化剂为平均长度400-600 nm, 宽度100-150 nm的针状形态, Fe和Co元素的分布比较均匀, Co掺杂没有改变MIL-88B(Fex,Co1-x)的拓扑结构. X射线光电子能谱分析结果表明从Co到Fe的供电子效应, Co的引入可以调节Fe中心的电子环境, Fe和Co具有协同催化作用. 通过甲醇液相氧化性能测试发现, MIL-88B(Fe0.7, Co0.3)表现出最优的催化性能, 使用0.5当量的H2O2为氧化剂, 在80 °C下反应60 min后, 甲醇转化率为34.8%, 甲酸甲酯选择性由50.7%(单金属Fe)提高至67.6%. 且经过四次催化循环后, MIL-88B(Fe0.7, Co0.3)的催化活性没有明显降低. 催化反应机理研究表明, Fe是吸附活化H2O2进而选择氧化甲醇的主要活性中心, H2O2首先在Fe3+上吸附和活化, 甲醇通过氢键作用吸附在MOF的骨架O原子上, 被逐步氧化为甲酸, 然后甲酸与剩余甲醇在Lewis酸性位点Fe3+和Co2+上反应生成甲酸甲酯; Co的掺杂加速了Fe(Ⅲ)/Fe(Ⅱ)的电子转移, 提供了更多的配位不饱和金属位点, 增强了对中间产物甲酸的吸附, 促进了甲酸向甲酸甲酯转化, 从而提高产物选择性.

关键词: 双金属有机框架材料, 甲醇氧化, 液相, 一步转化, 甲酸甲酯

Abstract:

The selective oxidation of methanol to methyl formate is one of the most attractive processes to obtain value-added methanol-downstream products. The development of highly efficient and stable catalysts is critical for this transformation. In this study, a series of MIL-88B(Fex,Co1-x) bimetallic catalysts with different Fe/Co molar ratios were prepared through a one-pot hydrothermal method. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-mass spectrometry characterization were performed to elucidate the structure of the catalysts. The activity of the catalysts were assessed in the one-step oxidation of methanol to methyl formate with H2O2 in a liquid-phase batch reactor. The results show that the MIL-88B(Fex,Co1-x) catalysts exhibit uniform needle-like morphologies with an average length and width of 400-600 nm and 100-150 nm, respectively. Co2+ is incorporated into the framework by partially replacing Fe3+ in MIL-88B. Moreover, the catalyst efficiently promoted the conversion of methanol to methyl formate. When MIL-88B(Fe0.7,Co0.3) catalyst was used with a molar ratio of H2O2 to methanol of 0.5 at 80 °C for 60 min, 34.8% methanol conversion was achieved, and the selectivity toward methyl formate was 67.6%. The catalysts also showed great stability with a steady conversion and selectivity even after four cycles. The preliminary oxidation mechanism was also studied. It was determined that H2O2 is first adsorbed on the Fe3+ sites and subsequently activates these sites. Methanol is adsorbed by the O atoms of the framework through hydrogen bonding and is gradually oxidized to formic acid. Subsequently, formic acid reacts with the residual methanol at the Fe3+ and Co2+ Lewis acid sites to form methyl formate.

Key words: Bimetal-organic frameworks, Methanol oxidation, Liquid phase, One-step transformation, Methyl formate