催化学报 ›› 2021, Vol. 42 ›› Issue (9): 1561-1575.DOI: 10.1016/S1872-2067(20)63759-7

• 论文 • 上一篇    下一篇

富硅壳层结构的无粘结剂MWW钛硅分子筛用作高选择性、高稳定性的丙烯环氧化

尹金鹏, 金鑫, 徐浩#(), 关业军, 彭如斯, 陈丽, 蒋金刚, 吴鹏*()   

  1. 华东师范大学化学与分子工程学院, 绿色化学与化工过程上海市重点实验室, 上海200062
  • 收稿日期:2020-12-11 接受日期:2021-01-11 出版日期:2021-09-18 发布日期:2021-05-16
  • 通讯作者: 徐浩,吴鹏
  • 基金资助:
    国家自然科学基金(21533002);国家自然科学基金(21872052);国家自然科学基金(21972044);国家重点研发计划(2016YFA0202804);中央高校基本科研业务费专项资金

Structured binder-free MWW-type titanosilicate with Si-rich shell for selective and durable propylene epoxidation

Jinpeng Yin, Xin Jin, Hao Xu#(), Yejun Guan, Rusi Peng, Li Chen, Jingang Jiang, Peng Wu*()   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
  • Received:2020-12-11 Accepted:2021-01-11 Online:2021-09-18 Published:2021-05-16
  • Contact: Hao Xu,Peng Wu
  • About author:# E-mail: hxu@chem.ecnu.edu.cn;
    * Tel/Fax: +86-21-62232292; E-mail: pwu@chem.ecnu.edu.cn;
  • Supported by:
    National Natural Science Foundation of China(21533002);National Natural Science Foundation of China(21872052);National Natural Science Foundation of China(21972044);Ministry of Science and Technology of the People’s Republic of China(2016YFA0202804);Fundamental Research Funds for the Central Universities

摘要:

环氧丙烷(PO)是一种重要的高活性丙烯衍生物, 被广泛用于生产各种商业化学品(丙二醇、聚氨酯和表面活性剂等). 目前, 工业生产PO主要有传统的氯醇法(CP), 共氧化法(叔丁基过氧化氢法、乙苯过氧化氢法和异丙苯过氧化氢法)和过氧化氢直接氧化法(HPPO). 其中, HPPO具有反应条件温和、活性高、选择性好和污染小等特点, 被认为是一种极具竞争力的环境友好型PO生产工艺. 目前, 基于TS-1/H2O2/甲醇催化体系的固定床连续HPPO工艺已经实现了工业化(陶氏/巴斯夫、赢创/伍德和中国石化). 但是, 溶剂甲醇会导致PO醇解开环, 使PO选择性降低, 而且甲醇和PO存在共沸问题, 使PO纯化分离的操作复杂, 能耗和成本增加. 本课题组之前报道过Ti-MWW在溶剂乙腈中比TS-1在溶剂甲醇中表现出更好的催化性能(Stud. Surf. Sci. Catal., 2007, 170, 1236-1243.), 尤其是质子型惰性溶剂乙腈的存在可以消除PO醇解副反应, 极大地提高了PO选择性. 因此, 开发和设计以乙腈为溶剂的工业Ti-MWW催化剂具有重要的学术和应用价值. 工业HPPO过程通常在固定床反应器中进行, 需要具有一定机械强度的催化剂来降低压降, 因此需要对催化剂原粉进行成型处理. 粘结剂是制备成型催化剂的必要添加剂, 通常是催化惰性组分, 但是它们的引入会降低催化剂中有效活性组分的比例, 而且大量的粘结剂会覆盖在沸石的表面及孔口, 导致活性中心的可接近性和利用率降低. 因此, 设计高性能的工业Ti-MWW催化剂既要消除粘结剂对底物向活性位点扩散的负面影响, 又要保持较高的机械强度.
本文首次提出了一种可控的二次晶化策略, 在双有机结构导向剂N,N,N-三甲基-1-金刚烷基氢氧化铵和六亚甲基亚胺的作用下, 成功地将成型SiO2/Ti-MWW催化剂中的粘结剂组分转化为MWW沸石相, 形成了具有富硅壳层的整体式无粘结剂Ti-MWW催化剂, 提高了扩散效率的同时也保证了机械强度. 在二次晶化过程中, 母体Ti-MWW发生了部分溶硅, 形成了大量的内部硅羟基巢, 同时部分骨架TiO4物种转变为了具有更强路易斯酸性(LAS)的开放状态的TiO6物种, 提高了催化剂对于H2O2的富集和活化能力, 使得PO收率从13.1%提高到48.4%, 催化使用寿命从75 h延长到了640 h. 为了进一步提高催化性能, 我们对催化剂进行了哌啶和氟化处理, 提高了催化剂中TiO6物种的比例; 将有强拉电子效应的氟引入分子筛骨架, 提高了Ti的LAS强度. 一方面, 具有强LAS的改性催化剂能够促进H2O2的活化形成Ti-OOH中间体, 提高Ti-OOH中Oα-Oβ的极化率, 从而促进活性Oα转移; 另一方面, 形成的Si-F基团中的F可以与Ti-OOH中的末端H形成更强的氢键, 从而稳定Ti-OOH, 促进活性Oα有效转移和环氧化过程, 抑制了H2O2的无效分解. 此外, 大量内部硅羟基巢被淬灭, 抑制了PO水解副反应的发生. 改性后的无粘结剂Ti-MWW催化剂具有2400 h的超长寿命, PO时空收率达到了543 g kg-1 h-1, 每1 kmol H2O2消耗的溶剂乙腈质量仅为194.3 kg.

关键词: 丙烯环氧化, 钛硅分子筛, 无粘结剂成型催化剂, 二次晶化, 微环境

Abstract:

Selective and durable fixed-bed catalysts are highly desirable for developing eco-efficient HPPO (hydrogen peroxide propylene oxide) process. The powder titanosilicate catalysts must be shaped before being applied in industrial processes. As the essential additives for preparing formed catalysts, binders are usually the catalytically inert components, but they would cover the surface and pore mouth of zeolite, thereby declining the accessibility of active sites. By recrystallizing the binder (silica)/Ti-MWW extrudates with the assistance of dual organic structure-directing agents, the silica binder was converted into MWW zeolite phase to form a structured binder-free Ti-MWW zeolite with Si-rich shell, which enhanced the diffusion efficiency and maintained the mechanical strength. Meanwhile, due to the partial dissolution of Si in the Ti-MWW matrix, abundant silanol nests formed and part of framework TiO4 species were transferred into open TiO6 ones, improving the accumulation and activation ability of H2O2 inside the monolith. Successive piperidine treatment and fluoridation of the binder-free Ti-MWW further enhanced the H2O2 activation and oxygen transfer ability of the active Ti sites, and stabilized the Ti-OOH intermediate through hydrogen bond formed between the end H in Ti-OOH and the adjacent Si-F species, thus achieving a more efficient epoxidation process. Additionally, the side reaction of PO hydrolysis was inhibited because the modification effectively quenched numerous Si-OH groups. The lifetime of the modified binder-free Ti-MWW catalyst was 2400 h with the H2O2 conversion and PO selectivity both above 99.5%.

Key words: Propylene epoxidation, Titanosilicate, Binder-free formed catalyst, Recrystallization, Microenvironment