催化学报 ›› 2021, Vol. 42 ›› Issue (6): 872-903.DOI: 10.1016/S1872-2067(20)63715-9
收稿日期:
2020-08-18
接受日期:
2020-09-21
出版日期:
2021-06-18
发布日期:
2021-01-30
通讯作者:
霍鹏伟,施伟东
基金资助:
Xiaoxue Zhao, Jinze Li, Xin Li, Pengwei Huo*(), Weidong Shi#(
)
Received:
2020-08-18
Accepted:
2020-09-21
Online:
2021-06-18
Published:
2021-01-30
Contact:
Pengwei Huo,Weidong Shi
About author:
#E-mail: swd1978@ujs.edu.cnSupported by:
摘要:
金属有机骨架(MOFs)具有较高的比表面积, 丰富的金属/有机物种, 较大的孔体积以及结构和成分可调节的特性,因此在太阳能燃料生产和污染物的光降解领域具有广泛的应用. 根据其结构特点, 研究者们主要从有机配体和孔道结构两方面对MOFs进行调控: (1)对有机配体进行修饰, 如将杂原子、羟基、卤素原子、金属离子、生物大分子等引入MOFs结构; (2)将无机纳米粒子引入MOFs孔道内, 如将贵金属、金属氧化物、多金属氧酸盐等纳米粒子封装在MOFs的孔道内. 这些策略可有效增强MOFs的导电性、稳定性等, 并进一步提高MOFs基催化剂的光催化性能.
本文首先概述了四种经典MOFs类型, 即UiO, ZIF, MIL和PCN系列的结构特点和催化性能. 其次, 总结了在设计MOFs基光催化材料过程中, 根据不同类型MOFs特点着重考虑的五方面因素, 即稳定性、能带结构、吸附作用、选择性和电导性. 再次, 讨论了提高MOFs基光催化剂活性的策略, 如助催化剂修饰、构建异质结、配体或金属中心修饰和缺陷工程. 最后, 总结了MOFs基光催化材料在催化还原CO2、分解水制氢和降解有机污染物反应中的应用进展及影响其催化性能的主要因素.
尽管MOFs基光催化材料研究已经取得了令人瞩目的进展, 但对MOFs基光催化剂进行可控设计制备仍然存在挑战. 如何实现纳米MOFs基光催化材料的制备与规模化生产、可调缺陷MOFs基光催化材料的精准设计、开发高稳定性的MOFs基光催化材料等仍需进一步探索. 因此, 未来需要从MOFs的纳米化合成、复合材料界面结构的精准调控、催化活性机制与稳定性关系等方面对MOFs基光催化材料进行深入的研究.
赵小雪, 李金择, 李鑫, 霍鹏伟, 施伟东. 金属有机框架(MOFs)基光催化剂的设计及其在太阳能燃料生产和污染物降解领域的研究进展[J]. 催化学报, 2021, 42(6): 872-903.
Xiaoxue Zhao, Jinze Li, Xin Li, Pengwei Huo, Weidong Shi. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants[J]. Chinese Journal of Catalysis, 2021, 42(6): 872-903.
Fig. 3. (a) ZIFs and zeolites have similar bond angles; (b) A schematic illustration of photocatalytic reaction mechanism of ZIF-67(9h)(Ar). Reprinted from Ref. [62]. Copyright (2019) Elsevier.
Fig. 4. Mechanism for the photocatalytic hydroxylation of benzene by MIL-100(Fe). Reprinted with permission from Ref. [49]. Copyright (2015) the Royal Society of Chemistry.
Fig. 5. (a) View of the 3D network of PCN-222; (b) UV-Vis spectra of H2TCPP and PCN-222. Reprinted with permission from Ref. [75]. Copyright (2015) American Chemical Society.
Fig. 6. Mechanism for photocatalytic CO2 reduction over PCN-136 under visible-light irradiation. Reprinted with permission from Ref. [76]. Copyright (2019) American Chemical Society.
Fig. 12. Transient absorption spectroscopy study of TiO2, NH2-UiO-66 and TiO2/NH2-UiO-66 composite (2-TiMOF). Reprinted with permission from Ref. [150]. Copyright (2017) Elsevier.
Fig. 13. (a) Photoreduction of the Cr(VI) at pH = 2 using various photocatalysts; (b) Illustration of plausible mechanism of photocatalysis reduction of Cr(VI) over BB-100 under white light. Reprinted with permission from Ref. [151]. Copyright (2020) Elsevier.
Fig. 16. (a) HR-TEM images 46TiO2@54NM; (b) Photocatalytic activities of 46TiO2@54NM, 46TiO2/54NM-Mech and 46TiO2/54NM-Evap. Reprinted with permission from Ref. [157]. Copyright (2019) Elsevier.
Fig. 18. Proposed photocatalytic mechanism and charge transfer scheme of the Ag3VO4/Cu-MOF/rGO. Reprinted with permission from Ref. [162]. Copyright (2020) Elsevier.
Fig. 19. (a) Schematic diagram of the visible light active MOFs; (b) UV/Vis spectra of the samples; (c) Proposed mechanism for the photocatalytic N2 fixation over NH2-MIL-125(Ti). Reprinted with permission from Ref. [166]. Copyright (2020) Elsevier.
Fig. 20. Photocatalytic mechanism of Cr(VI) reduction and TC-HCl oxidation in water with NH2-MIL-68 (InαFe1-α). Reprinted with permission from Ref. [169]. Copyright (2020) Elsevier.
Reactions | E0redox/(V vs NHE) |
---|---|
CO2 + 2H+ + 2e- → HCOOH | -0.61 V |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 V |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 V |
CO2 + 6H+ + 6e- → CH3OH + H2O | -0.38 V |
CO2 + 8H+ + 8e- → CH4 + H2O | -0.24 V |
Table 1 Reduction potentials of some reactions related to CO2 reduction.
Reactions | E0redox/(V vs NHE) |
---|---|
CO2 + 2H+ + 2e- → HCOOH | -0.61 V |
CO2 + 2H+ + 2e- → CO + H2O | -0.53 V |
CO2 + 4H+ + 4e- → HCHO + H2O | -0.48 V |
CO2 + 6H+ + 6e- → CH3OH + H2O | -0.38 V |
CO2 + 8H+ + 8e- → CH4 + H2O | -0.24 V |
Photocatalyst | Light | Sacrificial agent | Products | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
NH2-MIL-125(Ti) | Visible light | MeCN/TEOA | HCOOH | 16.28 | [ |
Eu-Ru(phen)3-MOF | Visible light | TEOA | HCOOH | 102.47 | [ |
AUBM-4 | Visible light | MeCN/TEOA | HCOOH | 366 | [ |
Ir-CP | Visible light | MeCN/TEOA | HCOOH | 158.3 | [ |
Rh-PMOF-1(Zr) | Visible light | MeCN/TEOA | HCOOH | 33.8 | [ |
PCN-138 | Visible light | TIPA | HCOOH | 6.6 | [ |
PCN-222 | Visible light | TEOA | HCOOH | 60 | [ |
PCN-136 | Visible light | TIPA | HCOOH | 46.29 | [ |
NNU-28 | Visible light | MeCN/TEOA | HCOOH | 149.88 | [ |
NNU-31-Zn | Visible light | — | HCOOH | 26.3 | [ |
UiO-66-CrCAT | Visible light | MeCN/TEOA | HCOOH | 1724.3 | [ |
UiO-66-NH2/2.0GR | Visible light | TEOA | HCOOH | 443.75 | [ |
CdS/ZIF-8 | Visible light | MeCN | CO | 803.25 | [ |
Co-ZIF-67@α-TiO2 | Visible light | MeCN/TEOA | CO | 7300 | [ |
TiO2/C@ZnCo-ZIF-L | UV-vis light | — | CO | 28.6 | [ |
PCN-250-Fe2Mn | Visible light | MeCN/TIPA | CO | 21510 | [ |
MIL-101-EN | Visible light | — | CO | 47.2 | [ |
MOF-Ni | Visible light | MeCN/TIPA | CO | 371.6 | [ |
NH2‑MIL-101(Fe)/g‑C3N4 | Visible light | TEOA | CO | 22.13 | [ |
CdS/MIL-101(Cr) | Visible light | — | CO | 16.35 | [ |
Zn-MOF | Visible light | MeCN/MeOH/TEOA | CO | — | [ |
Co-ZIF-9/CdS | Visible light | MeCN/TEOA | CO | 1426 | [ |
TiO2/MOF | Visible light | — | CO | 4.24 | [ |
Co-UiO-67 | Visible light | MeCN/TEOA | CO | 3292.5 | [ |
PCN-224(Cu)/TiO2 | Visible light | — | CO | 37.21 | [ |
CuTCPP/UiO-66/TiO2 | Visible light | — | CO | 31.32 | [ |
Ni3(HITP)2/[Ru(bpy)3]Cl2·6H2O | Visible light | MeCN/TEOA | CO | 3.45 × 104 | [ |
Ni3(HITP)2/rGO | Visible light | MeCN/TEOA | CO | 3.8 × 104 | [ |
In-Fe1.91TCPP-MOF | Visible light | Ethyl acetate | CO | 144.54 | [ |
In-Co1.71TCPP-MOF | Visible light | Ethyl acetate | CO | 38.70 | [ |
In-InTCPP-MOF | Visible light | Ethyl acetate | CO | 22.95 | [ |
Bi2S3/UiO-66 | UV-vis light | — | CO | 25.6 | [ |
CdS/ZIF-67 | Visible light | TEOA | CO | 183.964 | [ |
Zn2GeO4/Mg-MOF-74 | UV-vis light | MECN | CO | 1.45 | [ |
HKUST-1/TiO2 | Visible light | — | CO | 256.35 | [ |
TiO2/UiO-66 | UV-vis light | — | CH4 | 17.9 | [ |
TiO2/NH2-MIL-125(Ti) | Visible light | — | CH4 | 1.18 | [ |
Zn/PMOF | UV light | — | CH4 | 8.69 | [ |
SCu | Visible light | TEA | CH3OH | 262.6 ppm·g-1·h-1 | [ |
NNU-13 | Visible light | TEOA | CH4 | 117.33 | [ |
NNU-14 | Visible light | TEOA | CH4 | 52 | [ |
Table 2 Performances of some MOF-based photocatalysts for photocatalytic CO2 reduction.
Photocatalyst | Light | Sacrificial agent | Products | Yield (μmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
NH2-MIL-125(Ti) | Visible light | MeCN/TEOA | HCOOH | 16.28 | [ |
Eu-Ru(phen)3-MOF | Visible light | TEOA | HCOOH | 102.47 | [ |
AUBM-4 | Visible light | MeCN/TEOA | HCOOH | 366 | [ |
Ir-CP | Visible light | MeCN/TEOA | HCOOH | 158.3 | [ |
Rh-PMOF-1(Zr) | Visible light | MeCN/TEOA | HCOOH | 33.8 | [ |
PCN-138 | Visible light | TIPA | HCOOH | 6.6 | [ |
PCN-222 | Visible light | TEOA | HCOOH | 60 | [ |
PCN-136 | Visible light | TIPA | HCOOH | 46.29 | [ |
NNU-28 | Visible light | MeCN/TEOA | HCOOH | 149.88 | [ |
NNU-31-Zn | Visible light | — | HCOOH | 26.3 | [ |
UiO-66-CrCAT | Visible light | MeCN/TEOA | HCOOH | 1724.3 | [ |
UiO-66-NH2/2.0GR | Visible light | TEOA | HCOOH | 443.75 | [ |
CdS/ZIF-8 | Visible light | MeCN | CO | 803.25 | [ |
Co-ZIF-67@α-TiO2 | Visible light | MeCN/TEOA | CO | 7300 | [ |
TiO2/C@ZnCo-ZIF-L | UV-vis light | — | CO | 28.6 | [ |
PCN-250-Fe2Mn | Visible light | MeCN/TIPA | CO | 21510 | [ |
MIL-101-EN | Visible light | — | CO | 47.2 | [ |
MOF-Ni | Visible light | MeCN/TIPA | CO | 371.6 | [ |
NH2‑MIL-101(Fe)/g‑C3N4 | Visible light | TEOA | CO | 22.13 | [ |
CdS/MIL-101(Cr) | Visible light | — | CO | 16.35 | [ |
Zn-MOF | Visible light | MeCN/MeOH/TEOA | CO | — | [ |
Co-ZIF-9/CdS | Visible light | MeCN/TEOA | CO | 1426 | [ |
TiO2/MOF | Visible light | — | CO | 4.24 | [ |
Co-UiO-67 | Visible light | MeCN/TEOA | CO | 3292.5 | [ |
PCN-224(Cu)/TiO2 | Visible light | — | CO | 37.21 | [ |
CuTCPP/UiO-66/TiO2 | Visible light | — | CO | 31.32 | [ |
Ni3(HITP)2/[Ru(bpy)3]Cl2·6H2O | Visible light | MeCN/TEOA | CO | 3.45 × 104 | [ |
Ni3(HITP)2/rGO | Visible light | MeCN/TEOA | CO | 3.8 × 104 | [ |
In-Fe1.91TCPP-MOF | Visible light | Ethyl acetate | CO | 144.54 | [ |
In-Co1.71TCPP-MOF | Visible light | Ethyl acetate | CO | 38.70 | [ |
In-InTCPP-MOF | Visible light | Ethyl acetate | CO | 22.95 | [ |
Bi2S3/UiO-66 | UV-vis light | — | CO | 25.6 | [ |
CdS/ZIF-67 | Visible light | TEOA | CO | 183.964 | [ |
Zn2GeO4/Mg-MOF-74 | UV-vis light | MECN | CO | 1.45 | [ |
HKUST-1/TiO2 | Visible light | — | CO | 256.35 | [ |
TiO2/UiO-66 | UV-vis light | — | CH4 | 17.9 | [ |
TiO2/NH2-MIL-125(Ti) | Visible light | — | CH4 | 1.18 | [ |
Zn/PMOF | UV light | — | CH4 | 8.69 | [ |
SCu | Visible light | TEA | CH3OH | 262.6 ppm·g-1·h-1 | [ |
NNU-13 | Visible light | TEOA | CH4 | 117.33 | [ |
NNU-14 | Visible light | TEOA | CH4 | 52 | [ |
Fig. 23. (a) Schematic light-induced dynamics of Eu-Ru(phen)3-MOF; (b) Mechanism of photocatalytic CO2 reduction to HCOOH over Eu-Ru(phen)3-MOF. Reprinted with permission from Ref. [187]. Copyright (2018) Nature.
Fig. 24. Preparation of UiO-66-CrCAT photocatalyst by post-synthesis exchange (PSE) and metallization. Reprinted with permission from Ref. [193]. Copyright (2015) the Royal Society of Chemistry.
Fig. 25. (a) Before (blue curve) and in (red curve) photocatalytic CO2 reduction; (b) The CO adsorption energy on TiO2, ZnCo-ZIF-L, and TiO2/C@ZnCo-ZIF-L, respectively. Reprinted with permission from Ref. [196]. Copyright (2020) Elsevier.
Fig. 26. (a) Synthetic scheme of Co-UiO-67 or Re-UiO-67; (b) Reaction free energy of CO2 reduction to CO over Co-UiO-67 and Re-UiO-67. Reprinted with permission from Ref. [203]. Copyright (2020) American Chemical Society.
Fig. 28. XPS and XANES analyses of elemental electronic states on Ni3HITP2 and NHPG-2: (a) high-resolution Ni 2p spectra; (b) Ni L3 edge X-ray absorption near edge structure spectra. Reprinted with permission from [207]. Copyright (2020) Elsevier.
Photocatalyst | Co-catalyst | Photosensitizer | Products | Activity (mmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
Al-ATA-Ni MOF | — | — | H2 and O2 | 5.16 and 1.2 | [ |
MIL-125(Ti)-NH2 | — | — | H2 and O2 | 0.002 and 0.001 | [ |
MIL-125(Ti)-NH2 | CoOx | — | H2 and O2 | 0.007 and 0.003 | [ |
MIL-125(Ti)-NH2 | Pt | — | H2 and O2 | 0.003 and 0.001 | [ |
MIL-125(Ti)-NH2 | RuOX | — | H2 and O2 | 0.003 and 0.001 | [ |
MIL-125(Ti)-NH2 | Pt/RuOX | — | H2 and O2 | 0.01 and 0.004 | [ |
UiO-66(Zr/Ce/Ti) | — | — | H2 and O2 | 0.009 and 0.003 | [ |
MoS2/UiO-66-NH2 | — | — | H2 and O2 | 25.65 and 13.18 | [ |
Ru-MIL-125-NH2 | — | — | H2 | 0.426 | [ |
UiO-67-Ce | — | — | H2 | 10.784 | [ |
MIL-125-NH2@TiO2 | — | — | H2 | 0.496 | [ |
TiO2@NH2-MIL-125 | — | — | H2 | 0.44 | [ |
NH2-MIL-125(Ti)/RGO | — | — | H2 | 0.091 | [ |
ZnIn2S4@NH2-MIL-125(Ti) | — | — | H2 | 2.204 | [ |
Ti3C2@UiO-66-NH2 | — | — | H2 | 0.204 | [ |
Ti3C2/TiO2/UiO-66-NH2 | — | — | H2 | 1.980 | [ |
CdS QD/UiO-66-(SH)2 | — | — | H2 | 15.32 | [ |
NH2-UiO-66-d/ZnIn2S4 | — | — | H2 | 7.3 | [ |
CdLa2S4/MIL-88A(Fe) | — | — | H2 | 7.677 | [ |
CdS/ZIF-67 | — | — | H2 | 3.08 | [ |
CdS/Ni-MOF | — | — | H2 | 2.508 | [ |
3Cu/BiOI/4MOF | — | — | H2 | 0.269 | [ |
CuO@HKUST-1 | — | — | H2 | 0.667 | [ |
UNiMOF/gC3N4 | — | — | H2 | 0.4 | [ |
Zn0.2Cd0.8S@h-MOF-5 | — | — | H2 | 15.08 | [ |
Zn0.5Cd0.5S/ZIF-67 | — | — | H2 | 23.264.6 | [ |
CFB/NH2-MIL-125(Ti) | Pt | — | H2 | 1.123 | [ |
Pt@UiO-66-NH2 | Pt | — | H2 | 0.257 | [ |
Pt/UiO-66-NH2 | Pt | — | H2 | 0.05 | [ |
ZnIn2S4@NH2-MIL-53 | Pt | — | H2 | 26.95 | [ |
Bi-TBAPy | Pt | — | H2 | 0.14 | [ |
ZIF-8/g-C3N4 | Pt | — | H2 | 0.31 | [ |
Pt@PMOF | Pt | — | H2 | 8.52 | [ |
NH2-MIL-125/TiO2/CdS | Pt | — | H2 | 2.997 | [ |
NH2-MIL-125(Ti)/CTF-1 | Pt | — | H2 | 0.36 | [ |
g-C3N4/UMOFNs | Pt | — | H2 | 1.91 | [ |
g-C3N4@TiATA/Pt | Pt | — | H2 | 0.265 | [ |
CdS/UiO-66 | Pt | — | H2 | 47 | [ |
BP/R-Ti-MOFs/Pt | Pt | — | H2 | 1.24 | [ |
UiO-66/CdS | MoS2 | — | H2 | 32.5 | [ |
UiO-66(COOH)2/ZnIn2S4 | MoS2 | — | H2 | 18.794 | [ |
NH2-MIL-125(Ti)@ZnIn2S4/CdS | CdS | — | H2 | 2.367 | [ |
UiO-66-NH2 | Pt | Calix-3 | H2 | 0.516 | [ |
UiO-66 | Pt | ErB | H2 | 0.46 | [ |
UiO-66 | NiS2 | ErB | H2 | 1.84 | [ |
g-C3N4/UiO-66 | Ni2P | EY | H2 | 2 | [ |
Pt-SACs/MBT | Pt | EY | H2 | 68.33 | [ |
g-C3N4@ZIF-67/NiSx | NiSx | EY | H2 | 2.77 | [ |
g-C3N4/ZIF-67/MoS2 | MoS2 | EY | H2 | 4.0125 | [ |
MoS2 QDs/UiO-66-NH2/GO | MoS2 | EY | H2 | 2.074 | [ |
Table 3 Photocatalytic hydrogen production of MOF-based photocatalysts.
Photocatalyst | Co-catalyst | Photosensitizer | Products | Activity (mmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
Al-ATA-Ni MOF | — | — | H2 and O2 | 5.16 and 1.2 | [ |
MIL-125(Ti)-NH2 | — | — | H2 and O2 | 0.002 and 0.001 | [ |
MIL-125(Ti)-NH2 | CoOx | — | H2 and O2 | 0.007 and 0.003 | [ |
MIL-125(Ti)-NH2 | Pt | — | H2 and O2 | 0.003 and 0.001 | [ |
MIL-125(Ti)-NH2 | RuOX | — | H2 and O2 | 0.003 and 0.001 | [ |
MIL-125(Ti)-NH2 | Pt/RuOX | — | H2 and O2 | 0.01 and 0.004 | [ |
UiO-66(Zr/Ce/Ti) | — | — | H2 and O2 | 0.009 and 0.003 | [ |
MoS2/UiO-66-NH2 | — | — | H2 and O2 | 25.65 and 13.18 | [ |
Ru-MIL-125-NH2 | — | — | H2 | 0.426 | [ |
UiO-67-Ce | — | — | H2 | 10.784 | [ |
MIL-125-NH2@TiO2 | — | — | H2 | 0.496 | [ |
TiO2@NH2-MIL-125 | — | — | H2 | 0.44 | [ |
NH2-MIL-125(Ti)/RGO | — | — | H2 | 0.091 | [ |
ZnIn2S4@NH2-MIL-125(Ti) | — | — | H2 | 2.204 | [ |
Ti3C2@UiO-66-NH2 | — | — | H2 | 0.204 | [ |
Ti3C2/TiO2/UiO-66-NH2 | — | — | H2 | 1.980 | [ |
CdS QD/UiO-66-(SH)2 | — | — | H2 | 15.32 | [ |
NH2-UiO-66-d/ZnIn2S4 | — | — | H2 | 7.3 | [ |
CdLa2S4/MIL-88A(Fe) | — | — | H2 | 7.677 | [ |
CdS/ZIF-67 | — | — | H2 | 3.08 | [ |
CdS/Ni-MOF | — | — | H2 | 2.508 | [ |
3Cu/BiOI/4MOF | — | — | H2 | 0.269 | [ |
CuO@HKUST-1 | — | — | H2 | 0.667 | [ |
UNiMOF/gC3N4 | — | — | H2 | 0.4 | [ |
Zn0.2Cd0.8S@h-MOF-5 | — | — | H2 | 15.08 | [ |
Zn0.5Cd0.5S/ZIF-67 | — | — | H2 | 23.264.6 | [ |
CFB/NH2-MIL-125(Ti) | Pt | — | H2 | 1.123 | [ |
Pt@UiO-66-NH2 | Pt | — | H2 | 0.257 | [ |
Pt/UiO-66-NH2 | Pt | — | H2 | 0.05 | [ |
ZnIn2S4@NH2-MIL-53 | Pt | — | H2 | 26.95 | [ |
Bi-TBAPy | Pt | — | H2 | 0.14 | [ |
ZIF-8/g-C3N4 | Pt | — | H2 | 0.31 | [ |
Pt@PMOF | Pt | — | H2 | 8.52 | [ |
NH2-MIL-125/TiO2/CdS | Pt | — | H2 | 2.997 | [ |
NH2-MIL-125(Ti)/CTF-1 | Pt | — | H2 | 0.36 | [ |
g-C3N4/UMOFNs | Pt | — | H2 | 1.91 | [ |
g-C3N4@TiATA/Pt | Pt | — | H2 | 0.265 | [ |
CdS/UiO-66 | Pt | — | H2 | 47 | [ |
BP/R-Ti-MOFs/Pt | Pt | — | H2 | 1.24 | [ |
UiO-66/CdS | MoS2 | — | H2 | 32.5 | [ |
UiO-66(COOH)2/ZnIn2S4 | MoS2 | — | H2 | 18.794 | [ |
NH2-MIL-125(Ti)@ZnIn2S4/CdS | CdS | — | H2 | 2.367 | [ |
UiO-66-NH2 | Pt | Calix-3 | H2 | 0.516 | [ |
UiO-66 | Pt | ErB | H2 | 0.46 | [ |
UiO-66 | NiS2 | ErB | H2 | 1.84 | [ |
g-C3N4/UiO-66 | Ni2P | EY | H2 | 2 | [ |
Pt-SACs/MBT | Pt | EY | H2 | 68.33 | [ |
g-C3N4@ZIF-67/NiSx | NiSx | EY | H2 | 2.77 | [ |
g-C3N4/ZIF-67/MoS2 | MoS2 | EY | H2 | 4.0125 | [ |
MoS2 QDs/UiO-66-NH2/GO | MoS2 | EY | H2 | 2.074 | [ |
Fig. 31. Frontier molecular orbitals and HOMO/LUMO gaps of Ti8O8(OH)4(COOH)11(COOC6H5NH2), Ti8O8(OH)4(COOH)11(COOC6H5NH2) Ru and Ti8O8(OH)4(COOH)10(COOC6H5NH2)2Ru2. Reprinted with permission from Ref. [229]. Copyright (2019) American Chemical Society.
Fig. 32. (a) Synthetic process of monodisperse TiO2@MOF FS; (b) Schematic illustration for the enhanced photocatalytic process of TiO2@MOF FS. Reprinted with permission from Ref. [232]. Copyright (2020) Elsevier.
Fig. 33. (a) Schematic chart for the fabrication of Ti3C2/UiO-66-NH2; (b) Energy level structure diagram of Ti3C2/UiO-66-NH2 for photocatalytic HER process, Reprinted from Ref. [240], Copyright (2019), with permission from Elsevier; (c) Schematic chart for the fabrication of Ti3C2/TiO2/UiO-66-NH2; (d) The charge-transfer pathways for Ti3C2/TiO2/UiO-66-NH2. Reprinted with permission from Ref. [241]. Copyright (2019), Elsevier.
Fig. 34. Photocatalytic mechanism of the charge transfer for hydrogen evolution over the 10CFBM. Reprinted with permission from Ref. [251]. Copyright (2018) Elsevier.
Fig. 35. (a) Charge transfer path of MoS2/UiO-66/CdS; (b) The rate of H2 production over samples loaded with 1 wt% MoS2 or Pt. Reprinted with permission from Ref. [263]. Copyright (2015) Elsevier.
Fig. 36. The mechanism of photocatalytic hydrogen production of NH2-MIL-125(Ti)@ZnIn2S4/CdS. Reprinted with permission from Ref. [265]. Copyright (2020) Elsevier.
Fig. 38. (a) Hydrogen production of photocatalysts with diferent con-tents of Ni2P; (b) The photocatalytic hydrogen production mechanism by the EY sensitized g-C3N4/Ui0-66/Ni2P. Reprinted with permission from Ref. [269]. Copyright (2018) Elsevier.
Photocatalyst | Light | Pollutants | Reactive species | Activity (%) | Ref. |
---|---|---|---|---|---|
In2S3/UiO-66 | Visible light | MO | O2•- | 96.2 | [ |
TCH | 84.8 | ||||
S-TiO2/UiO-66-NH2 | Visible light | BPA | O2•- | 97.5 | [ |
C-dots/TiO2/UiO-66-NH2 | Visible light | KET | O2•- | 90 | [ |
Ag3VO4/Cu-MOF/rGO | Visible light | AB92 | O2•- | — | [ |
MOF/CuWO4 | Visible light | MB | O2•- | 98 | [ |
4-NP | 81 | ||||
ZIF-8@TiO2 | UV-vis light | TC | O2•- | 90 | [ |
AgBr/ZIF-8 | Visible light | MB | O2•- | 99.5 | [ |
NH2-MIL-125(Ti)/BiOCl | Visible light | TC | O2•- | 78 | [ |
BPA | 65 | ||||
CdS/MIL-53(Fe) | Visible light | RhB | O2•- | 92.5 | [ |
NH2-MIL-68(InαFe1-α) | Visible light | TC | O2•- | 72 | [ |
MIL-125(Ti)/g-C3N4 | UV-vis light | Cefixime | O2•- | — | [ |
TiO2@MIL-101(Cr) | UV light | BPA | O2•- | 99.4 | [ |
MIL-68(In)-NH2/GrO | Visible light | AMX | h+ | 93 | [ |
g-C3N4/MIL-68(In)-NH2 | Visible light | IBP | h+ | 93 | [ |
CQDs/NH2-MIL-125 | Visible light | RhB | h+ | 100 | [ |
Pt/MIL-125(Ti)/Ag | Visible light | KP | •OH | 95.5 | [ |
Ag NPs@MIL-100(Fe)/GG | Visible light | MB | •OH | 100 | [ |
Ag/AgCl@MIL-88A(Fe) | Visible light | IBP | h+ | 100 | [ |
TiO2-MIL-101(Cr) | Visible light | TC | h+ | 99.7 | [ |
TiO2@MIL-100(Fe) | Visible light | MB | h+ and •OH | 100 | [ |
MIL-53(Al)/ZnO | UV light | TMP | •OH | 93.5 | [ |
UiO-66-NH2/Bi2WO6 | Visible light | RhB | h+ | 100 | [ |
CoTiO3/UiO-66-NH2 | Visible light | NFX | •OH | 90.13 | [ |
NH2-UiO-66/ZnIn2S4 | UV-vis light | MG | h+ | 98 | [ |
MWCNT/N-TiO2/UiO-66-NH2 | Visible light | KET | •OH | 96 | [ |
Cu-NH2-MIL-125(Ti) | Visible light | MO | h+ and •OH | 86.9 | [ |
Phenol | 63.5 | ||||
CdS/MIL-53(Fe) | Visible light | KTC | •OH | 80 | [ |
In2S3/MIL-100(Fe) | Visible light | TC | h+ | 88 | [ |
Ag3VO4@MIL-125-NH2 | UV-vis light | MB | •OH | 95.2 | [ |
Ag3PO4@UMOFNs | Visible light | Phenol | h+ | 100 | [ |
BPA | 98.9 | ||||
UMOFN/Ag3PO4 | Visible light | 2-CP | h+ | — | [ |
Table 4 Photocatalytic degradation of organic pollutants over MOF-based photocatalysts.
Photocatalyst | Light | Pollutants | Reactive species | Activity (%) | Ref. |
---|---|---|---|---|---|
In2S3/UiO-66 | Visible light | MO | O2•- | 96.2 | [ |
TCH | 84.8 | ||||
S-TiO2/UiO-66-NH2 | Visible light | BPA | O2•- | 97.5 | [ |
C-dots/TiO2/UiO-66-NH2 | Visible light | KET | O2•- | 90 | [ |
Ag3VO4/Cu-MOF/rGO | Visible light | AB92 | O2•- | — | [ |
MOF/CuWO4 | Visible light | MB | O2•- | 98 | [ |
4-NP | 81 | ||||
ZIF-8@TiO2 | UV-vis light | TC | O2•- | 90 | [ |
AgBr/ZIF-8 | Visible light | MB | O2•- | 99.5 | [ |
NH2-MIL-125(Ti)/BiOCl | Visible light | TC | O2•- | 78 | [ |
BPA | 65 | ||||
CdS/MIL-53(Fe) | Visible light | RhB | O2•- | 92.5 | [ |
NH2-MIL-68(InαFe1-α) | Visible light | TC | O2•- | 72 | [ |
MIL-125(Ti)/g-C3N4 | UV-vis light | Cefixime | O2•- | — | [ |
TiO2@MIL-101(Cr) | UV light | BPA | O2•- | 99.4 | [ |
MIL-68(In)-NH2/GrO | Visible light | AMX | h+ | 93 | [ |
g-C3N4/MIL-68(In)-NH2 | Visible light | IBP | h+ | 93 | [ |
CQDs/NH2-MIL-125 | Visible light | RhB | h+ | 100 | [ |
Pt/MIL-125(Ti)/Ag | Visible light | KP | •OH | 95.5 | [ |
Ag NPs@MIL-100(Fe)/GG | Visible light | MB | •OH | 100 | [ |
Ag/AgCl@MIL-88A(Fe) | Visible light | IBP | h+ | 100 | [ |
TiO2-MIL-101(Cr) | Visible light | TC | h+ | 99.7 | [ |
TiO2@MIL-100(Fe) | Visible light | MB | h+ and •OH | 100 | [ |
MIL-53(Al)/ZnO | UV light | TMP | •OH | 93.5 | [ |
UiO-66-NH2/Bi2WO6 | Visible light | RhB | h+ | 100 | [ |
CoTiO3/UiO-66-NH2 | Visible light | NFX | •OH | 90.13 | [ |
NH2-UiO-66/ZnIn2S4 | UV-vis light | MG | h+ | 98 | [ |
MWCNT/N-TiO2/UiO-66-NH2 | Visible light | KET | •OH | 96 | [ |
Cu-NH2-MIL-125(Ti) | Visible light | MO | h+ and •OH | 86.9 | [ |
Phenol | 63.5 | ||||
CdS/MIL-53(Fe) | Visible light | KTC | •OH | 80 | [ |
In2S3/MIL-100(Fe) | Visible light | TC | h+ | 88 | [ |
Ag3VO4@MIL-125-NH2 | UV-vis light | MB | •OH | 95.2 | [ |
Ag3PO4@UMOFNs | Visible light | Phenol | h+ | 100 | [ |
BPA | 98.9 | ||||
UMOFN/Ag3PO4 | Visible light | 2-CP | h+ | — | [ |
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[3] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[4] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[5] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[6] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[7] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[8] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[9] | 乔秀清, 李晨, 王紫昭, 侯东芳, 李东升. TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能[J]. 催化学报, 2023, 51(8): 66-79. |
[10] | 刘赵春, 宗雪, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. 金属掺杂SnO2电化学还原CO2制甲酸的计算研究[J]. 催化学报, 2023, 50(7): 249-259. |
[11] | 林敏, 罗美兰, 柳勇志, 沈锦妮, 龙金林, 张子重. 一维S型异质结W18O49-SiC海胆状复合催化剂增强光催化CO2还原[J]. 催化学报, 2023, 50(7): 239-248. |
[12] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[13] | 李慧杰, 池漫洲, 辛兴, 王瑞杰, 刘天府, 吕红金, 杨国昱. 异金属取代的多金属氧酸盐@光响应型金属-有机框架用于高选择性光催化CO2还原[J]. 催化学报, 2023, 50(7): 343-351. |
[14] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[15] | 刘德法, 孙彬, 白硕杰, 高婷婷, 周国伟. 双助催化剂Ag/Ti3C2/TiO2分层花状微球用于增强光催化产氢活性[J]. 催化学报, 2023, 50(7): 273-283. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||