催化学报 ›› 2021, Vol. 42 ›› Issue (10): 1742-1754.DOI: 10.1016/S1872-2067(21)63810-X

• 论文 • 上一篇    下一篇

TiO2晶面依赖的Ir-TiOx相互作用对Ir/TiO2催化剂巴豆醛选择性加氢性能的影响

贾爱平a,b, 张云尚b, 宋通洋c, 胡一鸣a, 郑万彬a, 罗孟飞a, 鲁继青a(), 黄伟新b,d()   

  1. a浙江师范大学物理化学研究所, 教育部先进催化材料重点实验室, 浙江金华321004
    b中国科学技术大学化学物理系, 中国科学院能源转换材料重点实验室, 安徽合肥230026
    c华东师范大学化学与分子工程学院, 上海200062
    d洁净能源国家实验室(筹), 辽宁大连116023
  • 收稿日期:2021-01-23 接受日期:2021-02-22 出版日期:2021-10-18 发布日期:2021-06-20
  • 通讯作者: 鲁继青,黄伟新
  • 作者简介:#(0551)63600435; 电子信箱:huangwx@ustc.edu.cn
    *电话/传真: (0579)82287325; 电子信箱:jiqinglu@zjnu.cn;
  • 基金资助:
    国家自然科学基金(21773212);国家自然科学基金(21525313);国家自然科学基金(91745202);国家自然科学基金(91945301);中国科学院教育部长江学者资助项目

The effects of TiO2 crystal-plane-dependent Ir-TiOx interactions on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts

Aiping Jiaa,b, Yunshang Zhangb, Tongyang Songc, Yiming Hua, Wanbin Zhenga, Mengfei Luoa, Jiqing Lua(), Weixin Huangb,d()   

  1. aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    bHefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
    cShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
    dDalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China
  • Received:2021-01-23 Accepted:2021-02-22 Online:2021-10-18 Published:2021-06-20
  • Contact: Jiqing Lu,Weixin Huang
  • Supported by:
    National Natural Science Foundation of China(21773212);National Natural Science Foundation of China(21525313);National Natural Science Foundation of China(91745202);National Natural Science Foundation of China(91945301);Chinese Academy of Sciences, the Changjiang Scholars Program of Ministry of Education of China

摘要:

α,β-不饱和醇是一类重要的精细化学品, 主要通过α,β-不饱和醛选择性加氢获得. 由于α,β-不饱和醛分子中含有共轭的C=C键和C=O键, 且后者键能更大, 在热力学和动力学上均不利于C=O键的选择性加氢生成α,β-不饱和醇. 因此, 提高α,β-不饱和醛中C=O的加氢选择性是催化领域中一项挑战性的课题. 巴豆醛属于典型的α,β-不饱和醛, 研究其选择性加氢生成巴豆醇具有广泛的代表意义; Ir负载在具有还原性载体(如TiO2)上时, 表现出很好的C=O加氢选择性, 因此, 成为近年来的研究热点. 由于暴露不同晶面的TiO2具有不同的形貌和电子结构, 因此研究Ir-TiO2相互作用的晶面依赖性及其对巴豆醛选择性加氢反应的影响具有重要意义.
本文以分别暴露{101}、{100}和{001}晶面的锐钛矿TiO2纳米晶为载体, 制备了负载型Ir/TiO2催化剂, 系统研究了催化剂经过不同的预处理过程(在不同温度下H2还原和O2再氧化)后对巴豆醛的气相选择性加氢的性能. 利用高分辨透射电镜、原位X射线光电子能谱和原位漫反射红外光谱及氨程序升温脱附等技术研究发现, 预处理条件显著改变了Ir-TiOx的相互作用, 包括Ir金属的几何、电子性质及催化剂表面酸性. 这种相互作用与TiO2的暴露晶面密切相关, 从而改变了不同Ir/TiO2催化剂上不同加氢反应行为. 研究结果表明, 经300 °C预还原的Ir/TiO2-{101}催化剂催化性能最好, 在80 °C下初始反应速率为166.1 μmol g-Ir‒1 s‒1, 巴豆醇的生成转化频率为0.022 s‒1. 与其他催化剂相比, Ir/TiO2-{101}催化剂表面Ir0浓度最高, 表面酸度适中, 因此表现出最佳的催化性能. 同时Ir-TiOx界面在反应中的协同作用, 对H2和巴豆醛分子中C=O键的吸附和活化起到了关键作用. 然而当催化剂经过400 °C的H2预还原后, 由于产生了强的金属-载体相互作用使得TiOx对Ir粒子进行了包裹从而导致Ir-TiOx界面缺失, 因而催化剂催化巴豆醛加氢性能降低. 本文为理解金属-载体相互作用对巴豆醛选择性加氢反应的影响提供了新的见解, 并为设计高性能α,β-不饱和醛选择性加氢催化剂提供了理论依据.

关键词: 加氢反应, α,β-不饱和醛, Ir/TiO2, 金属-载体相互作用, 表面酸性

Abstract:

Three supported Ir/TiO2 catalysts, containing anatase TiO2 nanocrystals with predominantly exposed {101}, {100}, and {001} planes, were subjected to various pre-treatments (H2 reduction at different temperatures and O2 re-oxidation) and then tested in the vapor phase selective hydrogenation of crotonaldehyde. The pre-treatments significantly altered the Ir-TiOx interactions, including the morphologies and electronic properties of the Ir species and their surface acidity. These interactions were also closely related to the crystal planes of TiO2, which further supported the observed reaction behaviors of the various Ir/TiO2 catalysts. The best performance was obtained using the Ir/TiO2-{101} catalyst pre-reduced at 300 °C, owing to its higher Ir0 surface concentration and moderate surface acidity compared to the other catalysts. Moreover, these findings indicated the synergistic role of the Ir-TiOx interface in the reaction, as the interfacial sites were responsible for the adsorption/activation of H2 and the C=O bond in the crotonaldehyde molecule. However, pre-reduction at 400 °C resulted in partial encapsulation of the Ir particles by TiOx via strong metal-support interactions, which is unfavorable for the catalytic reaction owing to the loss of Ir-TiOx interfacial sites.

Key words: Hydrogenation, α,β-unsaturated aldehyde, Ir/TiO2, Metal-support interactions, Surface acidity