催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1341-1350.DOI: 10.1016/S1872-2067(21)63944-X

• 论文 • 上一篇    下一篇

基于聚(两性离子液体)功能化聚吡咯/氧化石墨烯的独特MoS2-SnS2异质纳米片及其改善的氮还原电活性

茆卉a, 杨浩然a, 柳金池a, 张帅a, 刘大亮a, 吴琼a, 孙文平c, 宋溪明a(), 马天翼b()   

  1. a辽宁大学化学院, 辽宁沈阳110036, 中国
    b斯威本科技大学埃米材料转化中心, 霍索恩, 澳大利亚
    c浙江大学材料科学与工程学院, 洁净能源利用国家重点实验室, 浙江杭州310027, 中国
  • 收稿日期:2021-08-13 接受日期:2021-09-13 出版日期:2022-05-18 发布日期:2022-03-23
  • 通讯作者: 宋溪明,马天翼
  • 基金资助:
    国家自然科学基金(51773085);国家自然科学基金(52071171);辽宁省“兴辽英才计划”项目-攀登学者(XLYC1802005);辽宁省百千万人才项目(LNBQW2018B0048);辽宁省自然科学基金优秀青年基金(2019-YQ-04);辽宁省教育厅重点研发项目(LZD201902);澳大利亚研究委员会未来学者(FT210100298);辽宁省教育厅青年科技人才“育苗”项目(LQN201903);辽宁省“兴辽英才计划”项目(XLYC2007132);辽宁大学本科教学改革项目(JG2020YBXM115)

Improved nitrogen reduction electroactivity by unique MoS2-SnS2 heterogeneous nanoplates supported on poly(zwitterionic liquids) functionalized polypyrrole/graphene oxide

Hui Maoa, Haoran Yanga, Jinchi Liua, Shuai Zhanga, Daliang Liua, Qiong Wua, Wenping Sunc, Xi-Ming Songa(), Tianyi Mab()   

  1. aInstitute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, Liaoning, China
    bCentre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
    cSchool of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2021-08-13 Accepted:2021-09-13 Online:2022-05-18 Published:2022-03-23
  • Contact: Xi-Ming Song, Tianyi Ma
  • Supported by:
    National Natural Science Foundation of China(51773085);National Natural Science Foundation of China(52071171);Liaoning Revitalization Talents Program - Pan Deng Scholars(XLYC1802005);Liaoning BaiQianWan Talents Program(LNBQW2018B0048);Natural Science Fund of Liaoning Province for Excellent Young Scholars(2019-YQ-04);Key Project of Scientific Research of the Education Department of Liaoning Province(LZD201902);Australian Research Council (ARC) Future Fellowship(FT210100298);Scientific Research Fund of Liaoning Provincial Education Department(LQN201903);Liaoning Revitalization Talents Program(XLYC2007132);Undergraduate Teaching Reform Project of Liaoning University(JG2020YBXM115)

摘要:

NH3是一种重要的化工原料, 广泛应用于合成各种化工产品. 然而, 传统还原N2制备NH3的Haber-Bosch工艺执行条件苛刻, 在消耗大量化石能源的同时产生严重环境污染. 在环境条件下的电化学氮还原反应(NRR)是一种最具前景的可持续、清洁生产NH3的能源技术, 其实际应用的核心是开发高效、价格低廉和易制备的NRR电催化剂. 过渡金属二硫族化合物(TMDCs)储量丰富并且价格低廉, 具有多变的晶体结构和相组成、可控的形貌、缺陷设计可调节等特点, 呈现出优异的电催化活性, 是用来替代贵金属的理想选择. MoS2和SnS2都可作为电催化剂应用于NRR. 由于金属1T-MoS2和1T’-MoS2对与NRR竞争的析氢反应(HER)具有极好的电化学活性, 其NRR法拉第效率较低; 尽管具有半导体特性的SnS2能够通过限制表面电子可及性来抑制HER, 但是高过电位和较低氨产率仍不能令人满意. 据报道, 在碳布上原位生长Mo掺杂SnS2具有丰富的S空位, 由于杂原子掺杂和空位工程形成了Mo-Sn-Sn三元催化位点, 其NRR活性显著增强.

因此, 为了抑制竞争反应以提高NRR的法拉第效率, 本文设计并制备了一种独特的无机/有机分级纳米结构用于电催化NRR. 选用一种独特的聚两性离子液体, 即侧链同时含有咪唑盐和磺酸基团的聚1-乙烯基-3-丙烷磺酸基咪唑盐(PVIPS), 作为界面诱导剂, 利用离子交换作用吸附作为前驱体的Mo7O246‒和Sn4+, 诱导1T’-MoS2和2T型六方SnS2同时生长, 形成独特的MoS2-SnS2异质纳米片负载于PVIPS功能化的聚吡咯/氧化石墨烯(PVIPS/PPy/GO)表面. 由于各组分的协同效应, 得到的MoS2-SnS2/PVIPS/PPy/GO纳米片表现出较好的NRR活性, 其在‒0.5 V (vs. RHE)时氨产率最佳, 为16.74 μg h‒1 mg‒1act., 其相应的法拉第效率为4.07%. 具有半导体特性的SnS2能够限制表面电子的可及性, 进而抑制1T’-MoS2的HER过程, 而具有金属性的1T’-MoS2可与SnS2形成Mo-Sn-Sn三元催化活性位点, 进而提高SnS2的NRR电催化活性. 此外, 高分辨透射电镜, X射线衍射和X射线光电子能谱结果表明, MoS2-SnS2/PVIPS/PPy/GO在NRR使用前后存在显著差异, 这主要归因于在NRR过程中MoS2-SnS2异质纳米片发生了不可逆的晶体相变. 部分1T’-MoS2和SnS2与N2发生电化学反应形成Mo‒N和Sn‒N键, 不可逆地相转变为Mo2N和SnxNz; 部分SnS2由于电化学体系中电源的还原作用而不可逆地演化为SnS. 本文为优化TMDCs的制备方法及其电催化活性提供了新的设计思路.

关键词: MoS2, SnS2, 聚1-乙烯基-3-磺酸丙基咪唑盐功能化的聚吡咯/氧化石墨烯, 氮还原反应, 不可逆晶体相变

Abstract:

Unique MoS2-SnS2 heterogeneous nanoplates have successfully in-situ grown on poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) functionalized polypyrrole/ graphene oxide (PVIPS/PPy/GO). PVIPS can attract heptamolybdate ion (Mo7O246-) and Sn4+ as the precursors by the ion-exchange, resulting in the simultaneous growth of 1T’-MoS2 and the berndtite-2T-type hexagonal SnS2 by the interfacial induced effect of PVIPS. The obtained MoS2-SnS2/ PVIPS/PPy/GO can serve as electrocatalysts, exhibiting good NRR performance by the synergistic effect. The semi-conducting SnS2 would limit the surface electron accessibility for suppressing HER process of 1T’-MoS2, while metallic 1T’-MoS2 might efficiently improve the NRR electroactivity of SnS2 by the creation of Mo-Sn-Sn trimer catalytic sites. Otherwise, the irreversible crystal phase transition has taken place during the NRR process. Partial 1T’-MoS2 and SnS2 have electrochemically reacted with N2, and irreversibly converted into Mo2N and SnxNz due to the formation of Mo-N and Sn-N bonding, meanwhile, partial SnS2 has been irreversibly evolved into SnS due to the reduction by the power source in the electrochemical system. It would put forward a new design idea for optimizing the preparation method and electrocatalytic activity of transition metal dichalcogenides.

Key words: MoS2, SnS2, Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate), functionalized polypyrrole/graphene oxide, Nitrogen reduction reaction, Irreversible crystal phase transition