催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1148-1155.DOI: 10.1016/S1872-2067(21)64012-3

• 论文 • 上一篇    下一篇

可规模化合成的Ru2P@Ru/CNT用于高效海水裂解

张丹a,b,c, 苗红福a,c, 吴雪珂a,c, 王作超a,c, 赵欢a,c, 石月a,c, 陈希磊a,b, 肖振宇a,c, 赖建平a,c,#(), 王磊a,b,c,*()   

  1. a青岛科技大学生态化工教育部重点实验室, 生命科学光电传感与分析化学重点实验室, 生态化学过程与技术泰山学者优势与特色学科团队, 山东青岛266042
    b山东省海洋环境腐蚀与安全防护工程研究中心, 青岛科技大学环境与安全工程学院, 山东青岛266042
    c青岛科技大学化学与分子工程学院, 山东青岛266042
  • 收稿日期:2021-09-06 接受日期:2021-09-06 出版日期:2022-03-05 发布日期:2022-03-01
  • 通讯作者: 赖建平,王磊
  • 基金资助:
    国家自然科学基金(51772162);国家自然科学基金(22001143);国家自然科学基金(52072197);山东省高校青年创新技术基金(2019KJC004);山东省杰出青年基金(ZR2019JQ14);泰山学者青年专家计划(tsqn201909114);泰山学者青年专家计划(tsqn201909123);山东省优秀青年基金(ZR2020YQ34);重大科技创新项目(2019JZZY020405);山东省自然科学基金重大基础研究项目(ZR2020ZD09)

Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting

Dan Zhanga,b,c, Hongfu Miaoa,c, Xueke Wua,c, Zuochao Wanga,c, Huan Zhaoa,c, Yue Shia,c, Xilei Chena,b, Zhenyu Xiaoa,c, Jianping Laia,c,#(), Lei Wanga,b,c,*()   

  1. aKey Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    bShandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
    cCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, China
  • Received:2021-09-06 Accepted:2021-09-06 Online:2022-03-05 Published:2022-03-01
  • Contact: Jianping Lai, Lei Wang
  • Supported by:
    National Natural Science Foundation of China(51772162);National Natural Science Foundation of China(22001143);National Natural Science Foundation of China(52072197);Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China(2019KJC004);Outstanding Youth Foundation of Shandong Province, China(ZR2019JQ14);Taishan Scholar Young Talent Program(tsqn201909114);Taishan Scholar Young Talent Program(tsqn201909123);Natural Science Foundation of Shandong Province(ZR2020YQ34);Major Scientific and Technological Innovation Project(2019JZZY020405);Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09)

摘要:

利用间歇性可再生能源电解水制备高纯度氢气具有广阔的应用前景. 目前, 在电催化析氢反应中, 高效稳定的催化剂主要应用于由去离子水构成的酸性或碱性电解液. 然而淡水资源的稀缺性极大地限制了其发展空间. 海水资源在全球水资源储量占比高达97%, 因此实现海水高效稳定制备氢气将极大程度缓解淡水资源对于电催化析氢反应发展的限制.
金属磷化物具有良好的电子传输能力, 有利于促进析氢反应动力学. 合理调节金属磷化物的电子结构, 有利于其对反应中间体的吸附和氢气的脱附, 从而促进产氢. 同时, 金属磷键能够稳定金属原子, 防止反应过程中金属原子的溶解失活, 从而提高催化剂稳定性. 构建负载型金属磷化物异质结能够引入更多的析氢反应活性位点, 进一步促进催化剂对水的吸附和中间体的活化. 而且金属磷化物与高导电性和分散性的载体之间的强相互作用有助于催化剂活性的综合提升. 尽管负载型磷化物异质结展现出了良好的析氢性能, 但其在海水中的析氢本征活性仍难以超越商业铂碳催化剂.
基于此, 本文提出了一种简单快速的无溶剂微波方法, 并成功制备了一系列Ru2P@Ru/CNT催化剂. 催化剂的完整制备过程只需1 min, 并且不涉及任何溶剂的使用. 表征结果表明, 负载在碳纳米管上的Ru2P@Ru纳米颗粒直径仅为2.5 nm左右. 这是由于微波提供的高温将反应物快速烧结成所需的晶相, 同时, 较短的反应时间限制了纳米颗粒的尺寸的增长, 并减少了挥发性元素的损失. 电化学测试结果表明, 比例优化后的Ru2P@Ru/CNT (Ru2P:Ru = 66:34)在1.0 mol/L KOH和真实碱性海水中分别只需要23和29 mV的过电位即可达到10 mA cm-2的电流密度, 是已报道的非Pt基材料中催化效果较好的催化剂之一. 并且, Ru2P@Ru/CNT具有出色的本征活性, 在1.0 mol/L KOH和真实碱性海水中的转换频率分别为13.1和8.5 s-1, 远超商业Pt/C. 此外, 本文进一步探索了Ru2P@Ru/CNT在高电流密度下的催化活性. 电化学测试结果表明, Ru2P@Ru/CNT在1.0 mol/L KOH中仅需要77和104 mV的过电位即可达到500和1000 mA cm-2的电流密度. 同时, 经过100 h的稳定性测试, 该催化剂无论在低电流密度、高电流密度以及碱性海水中都展示出了较好的稳定性.

关键词: 超小纳米粒子, 磷化物, 多界面, 无溶剂微波法, 海水裂解

Abstract:

In this study, an ultra-fast and simple solvent-free microwave method was successfully demonstrated using a series of ultra-small (~2.5 nm) surfactant-free Ru2P@Ru/CNT heterostructures for the first time. The structure has a high-density Ru component and Ru2P component interface, which accelerates the hydrogen evolution reaction (HER). The prepared Ru2P@Ru/CNT demonstrated excellent catalytic effects for the HER in alkaline media and real seawater. The experimental results indicate that ratio-optimized Ru2P@Ru/CNT (Ru2P:Ru = 66:34) requires only 23 and 29 mV to reach 10 mA cm-2in 1.0 mol/L KOH and real seawater, respectively. These values are 10 and 24 mV lower than those of commercial Pt/C in 1.0 mol/L KOH (33 mV) and real seawater (53 mV), respectively, making it among the best non-Pt HER reported in the literature. Additionally, the TOF of Ru2P@Ru/CNT in alkaline freshwater and seawater were 13.1 and 8.5 s-1, respectively. These exceed the corresponding values for Pt/C, indicating that the catalyst has excellent intrinsic activity. The high current activity of Ru2P@Ru/CNT in 1.0 mol/L KOH was explored, and only 77 and 104 mV were required to reach 500 and 1000 mA cm-2, respectively. After 100 h of durability testing, the catalyst retained excellent catalytic and structural stability in low current density, high current density, and seawater.

Key words: Ultra-small nanoparticles, Phosphide, Multi-interface, Solvent-free microwave method, Seawater splitting