催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1906-1917.DOI: 10.1016/S1872-2067(21)64018-4

• 论文 • 上一篇    下一篇

TM@Ti2CTx电催化还原CO2: 官能团诱导电子轨道重构与电荷转移

李能a,b,*(), 彭嘉禾a,b, 史祖皓a, 张鹏c, 李鑫d,#()   

  1. a武汉理工大学硅酸盐建筑材料国家重点实验室, 湖北武汉430070
    b武汉理工大学深圳研究院, 广东深圳518000
    c郑州大学材料科学与工程学院, 国家低碳环保材料智能设计国际联合研究中心, 河南郑州450001
    d华南农业大学生物质工程研究院, 农业部能源植物资源与利用重点实验室, 广东广州510642
  • 收稿日期:2021-10-19 接受日期:2021-12-24 出版日期:2022-07-18 发布日期:2022-05-20
  • 通讯作者: 李能,李鑫
  • 基金资助:
    国家自然科学基金(21975084);国家自然科学基金(51672089);湖北省自然科学基金杰出青年基金(2020CFA087);霍英东教育基金会青年教师基金(161008);深圳市基础研究计划(JCYJ20190809120015163);中央政府引导地方科技发展基金自由探索基础研究(2021Szvup106);中国创新海外专家引进项目(B18038);中央高校基本科研基金(2022WUT);广东省自然科学基金面上项目(2022A1515011303)

Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction

Neng Lia,b,*(), Jiahe Penga,b, Zuhao Shia, Peng Zhangc, Xin Lid,#()   

  1. aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China
    bShenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, Guangdong, China
    cState Center for International Cooperation on Designer Low Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
    dInstitute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2021-10-19 Accepted:2021-12-24 Online:2022-07-18 Published:2022-05-20
  • Contact: Neng Li, Xin Li
  • Supported by:
    National Natural Science Foundation of China(21975084);National Natural Science Foundation of China(51672089);Natural Science Fund for Distinguished Young Scholars of Hubei Province(2020CFA087);Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China(161008);Basic Research Program of Shenzhen(JCYJ20190809120015163);Central Government Guides Local Science and Technology Development Funds to Freely Explore Basic Research Projects(2021Szvup106);Overseas Expertise Introduction Project for Discipline Innovation of China(B18038);Fundamental Research Funds for the Central Universities(2022WUT);Guangdong Basic and Applied Basic Research Foundation(2022A1515011303)

摘要:

单原子催化还原二氧化碳制备可再生燃料和化工原料是一种有前途二氧化碳资源化技术. 受MXene纳米片及其表面官能团调节的启发, 本文利用不同的官能团(T = ‒O和‒S)构建了Ti2C基单原子电催化剂(TM@Ti2CTx, TM = V, Cr, Mn, Fe, Co, Ni), 采用从头算量子化学方法, 通过调控MXene表面官能团引起电子轨道重构和电荷转移, 从而调控MXene基电催化剂的二氧化碳电催化性能.

本文研究发现, 氧官能团表面锚定的单原子催化剂(TM@Ti2CO2)能够显著活化CO2. 当CO2分子吸附在TM@Ti2CO2表面上时, CO2分子的轨道发生了重构, CO2分子2π*u反键轨道劈裂, 部分轨道与单原子的3d轨道结合沉入费米能级之下, 导致CO2分子发生形变. 当CO2分子吸附在TM@Ti2CS2后, 2π*u反键轨道并未发生劈裂, 因而CO2分子并未产生形变. Bader电荷的研究结果表明, 相比于硫官能团, 锚定单原子一侧的氧官能团能够提供额外的电子参与CO2活化的电荷输运当中. 当电荷注入到缺电子中心的碳原子上时, CO2的分子轨道发生了重构, 导致CO2分子活化. 进一步解析CO2在单原子催化剂表面的吸附过程发现, TM@Ti2CO2传输的电子有利于CO2分子克服弯折所需能量, 进而达到活化CO2的目的. 质子化反应研究也表明, 活化后的CO2分子能够降低形成COOH/HCOO中间产物的难度. 在第三步质子化反应过程中, TM@Ti2CO2催化剂反应能垒均比TM@Ti2CS2高, 不利于CO2还原成甲烷.

在此基础上, 本文提出通过构建氧硫混合官能团表面来提升CO2电催化还原性能. 研究表明, 氧硫混合官能团表面锚定的单原子不仅能够有效活化CO2分子同时也降低了反应的能垒, 为实验合成高效MXene基单原子CO2还原催化剂提供了新思路.

关键词: TM@Ti2CTx MXene, 单原子催化剂, CO2还原, 轨道重构, 电荷转移, 表面混合官能团

Abstract:

Inspired by MXene nanosheets and their regulation of surface functional groups, a series of Ti2C-based single-atom electrocatalysts (TM@Ti2CTx, TM = V, Cr, Mn, Fe, Co, and Ni) with two different functional groups (T = -O and -S) was designed. The CO2RR catalytic performance was studied using well-defined ab initio calculations. Our results show that the CO2 molecule can be more readily activated on TM @Ti2CO2 than the TM@Ti2CS2 surface. Bader charge analysis reveals that the Ti2CO2 substrate is involved in the adsorption reaction, and enough electrons are injected into the 2π*u orbital of CO2, leading to a V-shaped CO2 molecular configuration and partial negative charge distribution. The V-shaped CO2 further reduces the difficulty of the first hydrogenation reaction step. The calculated ΔG of the first hydrogenation reaction on TM@Ti2CO2 was significantly lower than that of the TM@Ti2CS2 counterpart. However, the subsequent CO2 reduction pathways show that the UL of the potential determining step on TM@Ti2CS2 is smaller than that of TM@Ti2CO2. Combining the advantages of both TM@Ti2CS2 and TM@Ti2CO2, we designed a mixed functional group surface with -O and -S to anchor TM atoms. The results show that Cr atoms anchored on the surface of mixed functional groups exhibit high catalytic activity for the selective production of CH4. This study opens an exciting new avenue for the rational design of highly selective MXene-based single-atom CO2RR electrocatalysts.

Key words: TM@Ti2CTx MXene, Single-atom catalyst, CO2RR, Orbital reconstruction, Charge transform, Mixed functional group surface