催化学报 ›› 2024, Vol. 61: 237-246.DOI: 10.1016/S1872-2067(24)60023-9

• 论文 • 上一篇    下一篇

原位构筑三维有序自支撑Co-N-C一体化电极并用于高效电催化氧还原反应

陈瑞a, 方翔b, 张东方b, 赫兰齐c, 吴胤龙a, 孙成华d,*(), 王昆a,*(), 宋树芹a,*()   

  1. a中山大学化学工程与技术学院, 材料科学与工程学院, 广东省低碳化学与过程节能重点实验室, 广东广州 510275, 中国
    b中交四航工程研究院有限公司, 广东广州 510230, 中国
    c广电计量检测集团股份有限公司, 广东广州 510656, 中国
    d斯威本科技大学化学与生物技术系, 霍索恩, 澳大利亚
  • 收稿日期:2024-03-10 接受日期:2024-03-19 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: stsssq@mail.sysu.edu.cn (宋树芹), wangk269@mail.sysu.edu.cn (王昆), chenghuasun@swin.edu.au (孙成华).
  • 基金资助:
    国家自然科学基金项目(21978331);广东省基础与应用基础研究基金项目(2022A1515011196);广州市基础与应用基础研究计划项目(202201011449);广东省燃料电池技术重点实验室开放基金项目(FC202220);广东省燃料电池技术重点实验室开放基金项目(FC202216);水工构造物耐久性技术交通运输行业重点实验室开放课题(KFKT-SG-2019-03)

In-situ construction of three-dimensional ordered cobalt-nitrogen- carbon nanotubes integrated self-supporting electrode for efficiently electrocatalyzing oxygen reduction reaction

Rui Chena, Xiang Fangb, Dongfang Zhangb, Lanqi Hec, Yinlong Wua, Chenghua Sund,*(), Kun Wanga,*(), Shuqin Songa,*()   

  1. aThe Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Laboratory, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
    bCCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, Guangdong, China
    cGRG Metrology and Test Group Co., Ltd., Guangzhou 510656, China
    dDepartment of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
  • Received:2024-03-10 Accepted:2024-03-19 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: stsssq@mail.sysu.edu.cn (S. Song), wangk269@mail.sysu.edu.cn (K. Wang), chenghuasun@swin.edu.au (C. Sun).
  • Supported by:
    National Natural Science Foundation of China(21978331);Guangdong Basic and Applied Basic Research Foundation(2022A1515011196);Guangzhou Basic and Applied Basic Research Project(202201011449);Open Project of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220);Open Project of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202216);Open Project of Key Laboratory of Harbor and Marine Structure Durability Technology, Ministry of Transport of PRC(KFKT-SG-2019-03)

摘要:

开发高效非贵金属氧还原反应(ORR)催化剂是降低质子交换膜燃料电池(PEMFC)成本, 实现其大规模商业化应用的关键. 目前, 过渡金属-氮-碳(TM-N-C)被认为是最有希望替代Pt的非贵金属催化剂. 然而, 尽管在半池测试中展现出较好的ORR性能, 但当将其组装到PEMFC核心部件膜电极(MEA)中时, 其单池性能远低于Pt/C催化剂. 因此, 未来需要进一步优化TM-N-C在全电池环境中的性能.
本文提出了一种原位策略, 成功构筑了TM-N-C三维有序一体化ORR电极. 通过结合碳纸亲水处理和化学气相沉积技术, 在含氧官能团修饰的碳纸(OCP)上原位构建了Co, N共掺杂碳纳米管(N-CNTs@Co)自支撑三维有序一体化电极. 该独特的三维有序网络结构不仅使反应物(H2, O2和H2O)和质子(H+和e-)的传输通道处于有序状态, 降低了实际工况条件下的浓差极化, 还避免了催化层传统制备过程(如涂覆、喷涂和流延法)引起的催化剂活性位点团聚或包埋, 从而提高了催化剂的利用率. X射线光电子能谱分析表明, 优化后的一体化电极试样(N-CNTs-20@Co/OCP, 其中20代表CNT生长时间为20 min)具有最高的吡啶N和石墨化N含量, 而吡啶N和石墨化N被普遍认为是N掺杂碳材料在电催化ORR中的活性位点. 因此, 该N-CNTs-20@Co/OCP一体化电极在酸性(0.1 mol L‒1 HClO4)和碱性(0.1 mol L‒1 KOH)介质中均展现出与商用Pt/C (20 wt%)喷涂在CP(0.2 mgPt cm‒2)上制备的传统电极相当的ORR性能. 密度泛函理论计算进一步揭示了其性能提升的机制: Co纳米颗粒被封装在碳纳米管内部并作为电子供体, 通过电子隧穿效应, 强化了N-CNTs@Co/OCP催化剂表面对氧的吸附, 进而提高了电催化ORR性能. 此外, 封装在碳纳米管内部的Co纳米颗粒避免了与电解液的直接接触, 从而显著提高了催化剂的稳定性.
综上, 本文不仅为基于非贵金属ORR催化剂三维有序一体化电极的构筑提供了有益的理论储备和实验技术积累, 而且对于降低燃料电池成本以及推动燃料电池产业化进程提供了一定的参考.

关键词: 氧还原反应, 一体化电极, 非贵金属催化剂, 化学气相沉积, Co, N共掺杂碳纳米管

Abstract:

Developing low-cost non-precious metal catalysts (NPMC) to replace Pt-based catalysts and rationally designing their integrated electrode to efficiently electrocatalyze oxygen reduction reaction (ORR) are greatly significant for facilitating the commercialization of fuel cells. Here, we report a novel self-supporting three-dimensional (3D) ordered integrated ORR electrode by a simple chemical vapor deposition (CVD) approach to in-situ grow Co,N co-doped carbon nanotubes (N-CNTs@Co) onto carbon paper modified by oxygen-containing functional groups (OCP). Benefiting from the moderate density of CNTs and abundant pyridinic N and graphitic N configurations as ORR active sites, the best-performing sample (N-CNTs-20@Co/OCP) exhibits outstanding ORR performance in both basic (0.1 mol L‒1 KOH) and acidic (0.1 mol L‒1 HClO4) media, which is comparable to the one fabricated through the conventional method by spraying commercial Pt/C (20 wt%) onto OCP substrate (0.2 mg Pt cm‒2). This work can provide a feasible solution for the in-situ construction of efficient NPMC-based ORR integrated electrode.

Key words: Oxygen reduction reaction, Integrated electrode, Non-precious metal catalyst, Chemical vapor deposition, Co,N co-doped carbon nanotubes