催化学报 ›› 2024, Vol. 67: 186-193.DOI: 10.1016/S1872-2067(24)60142-7

• 论文 • 上一篇    下一篇

构建NiCu/Ni3N异质结构催化剂以实现碱性条件下高效氢氧化反应

李金池a,d, 周万海b, 于书棋a,d, 卿晨c, 何剑a,d, 曾亮c,d, 王尧a,d(), 陈云贵a,d   

  1. a四川大学新能源与低碳技术研究院, 四川成都 610065
    b复旦大学化学与材料学院, 先进材料实验室, 上海 200433
    c四川大学材料科学与工程学院, 新能源材料系, 四川成都 610065
    d四川大学新能源材料与器件教育部工程研究中心, 四川成都 610065
  • 收稿日期:2024-08-28 接受日期:2024-09-14 出版日期:2024-11-30 发布日期:2024-11-30
  • 通讯作者: 王尧
  • 基金资助:
    国家自然科学基金(22279082)

Cu-induced interface engineering of NiCu/Ni3N heterostructures for enhanced alkaline hydrogen oxidation reaction

Jinchi Lia,d, Wanhai Zhoub, Shuqi Yua,d, Chen Qingc, Jian Hea,d, Liang Zengc,d, Yao Wanga,d(), Yungui Chena,d   

  1. aInstitute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, Sichuan, China
    bLaboratory of Advanced Materials, College of Chemistry and Materials, Fudan University, Shanghai 200433, China
    cDepartment of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    dEngineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, Sichuan, China
  • Received:2024-08-28 Accepted:2024-09-14 Online:2024-11-30 Published:2024-11-30
  • Contact: Yao Wang
  • Supported by:
    National Natural Science Foundation of China(22279082)

摘要:

能源存储与转换装置在便携式电源、电动汽车和大规模能源存储等领域中扮演着至关重要的角色. 其中, 阴离子交换膜燃料电池(AEMFCs)因其高能量效率和可持续性, 逐渐成为可再生能源集成的理想选择. AEMFCs的优势在于可以在较低温度下操作, 同时具备较高的能量转化效率. 然而, 在实际应用中AEMFCs的性能仍主要依赖于贵金属催化剂, 如铂和铑. 这些贵金属催化剂虽然表现出优异的催化性能, 但其昂贵的成本限制了AEMFCs的大规模应用. 因此, 开发高效的非贵金属氢氧化反应(HOR)催化剂成为提高AEMFCs性能和降低成本的关键.

本文成功制备了NiCu/Ni3N异质结构催化剂, 结合了NiCu合金和Ni3N的协同优势, 显著优化了氢吸附能(HBE)和羟基吸附能(OHBE), 从而大幅度提高了HOR的催化活性. 不同于传统的通过调控焙烧条件来制备催化剂的方法, 本文采用调控Cu的掺杂含量实现异质结构的构建. 该方法不仅克服了传统方法的限制, 还为催化剂设计提供了新的思路. 研究发现, 当Cu掺杂量过多时, 会对Ni3N的形成产生抑制作用, 导致Ni3N仅在富Ni区域生成. 这种掺杂导致了在NiCu合金表面形成了平均粒径约为5 nm的小尺寸Ni3N颗粒. X射线衍射、透射电子显微镜、X射线光电子能谱以及X射线吸收精细结构等表征结果证实了NiCu/Ni3N异质结构成功合成. 电化学测试结果表明, NiCu/Ni3N催化剂在0.1 mol L‒1 KOH溶液中的氢氧化反应表现出较好的催化活性, 在50 mV的质量活性高达71.8 mA mg‒1, 明显高于纯Ni和NiCu合金催化剂. 同时, 该催化剂的交换电流密度也显著提高, 表明其本征催化活性得到了显著增强. 稳定性测试结果显示, 该催化剂在经过1000次循环后, 其催化活性几乎没有衰减, 展现出较好的稳定性, 说明具有较强的实际应用性能. 为了深入理解催化性能的提升机制, 进行了密度泛函理论计算, 结果表明, NiCu/Ni3N异质结构的独特界面可以降低氢氧化反应中关键步骤的能垒, 从而促进水的生成过程. 此外, 电子结构分析结果表明, 界面的形成有效地调节了Ni的d带中心, 优化了HBE和OHBE, 从而实现了对氢氧化反应活性的协同提升.

综上, 本文为构建具有优化界面结构的高性能非贵金属HOR催化剂提供了新的思路, 推进了AEMFCs在交通运输领域的应用. 未来, 进一步探索不同金属间的协同效应和界面工程, 将有助于开发更多高效、稳定的电催化材料.

关键词: 氢氧化反应, 异质结构电催化剂, 非贵金属催化剂, 氢吸附能, 羟基吸附能

Abstract:

Constructing well-defined interfaces in catalysts is a highly effective method to accelerate reactions with multiple intermediates. In this study, we developed a heterostructure catalyst combining fcc NiCu and hcp Ni3N, aiming at achieving superior performance in alkaline hydrogen electrocatalysis. The NiCu/Ni3N not only overcomes the inadequate hydroxyl binding energy performance of NiCu alloys but also solves the problems of insufficient active sites found in most Ni/Ni3N. Experimental results and density functional theoretical calculations reveal that the formation of heterostructure significantly depends on the amount of Cu. This approach effectively prevents the side effects of increased catalyst particle size, typically resulting from the high temperatures and prolonged reaction times required for conventional synthesis of Ni/Ni3N. The interface of this heterostructure induces a distinctive overlapping effect that enhances the adsorption of water and lowers the energy barrier for the rate-determining step. The NiCu/Ni3N catalyst shows an impressive activity of 71.8 mA mg-1 at an overpotential of 50 mV, a 14.7 times efficiency enhancement compared to pure Ni and comparable to that of low-loaded commercial Pt/C. This research highlights the potential of NiCu/Ni3N in advancing catalyst development.

Key words: Hydrogen oxidation reaction, Heterostructured electrocatalyst, Non-precious metal catalyst, Hydrogen adsorption energy, Hydroxyl adsorption energy