催化学报 ›› 2021, Vol. 42 ›› Issue (12): 2094-2104.DOI: 10.1016/S1872-2067(21)64088-3
仇暘a, 谢小红a, 李文震b,c,#(), 邵玉艳a,*(
)
收稿日期:
2021-01-18
接受日期:
2021-01-18
出版日期:
2021-12-18
发布日期:
2021-04-25
通讯作者:
李文震,邵玉艳
Yang Qiua, Xiaohong Xiea, Wenzhen Lib,c,#(), Yuyan Shaoa,*(
)
Received:
2021-01-18
Accepted:
2021-01-18
Online:
2021-12-18
Published:
2021-04-25
Contact:
Wenzhen Li,Yuyan Shao
About author:
# E-mail: wzli@iastate.edu摘要:
阴离子交换膜(AEM)燃料电池因具有使用非贵金属作为催化剂的优点而受到广泛关注. 然而, 在碱性体系中, AEM燃料电池中氢氧化反应(HOR)的反应动力学比在酸性介质中的慢两个数量级. 针对HOR在碱中动力学缓慢的问题, 有两种主要的理论来解释, (1)pH相关的氢结合能作为主要影响因素来控制HOR动力学的理论; (2) 质子和氢氧根离子的吸附共同作为影响因子来控制HOR在碱性条件下的动力学的双功能理论.
本文首先讨论了在碱性电解质中可能的HOR反应机理及其Tafel性能变化. 除了传统的Tafel-Volmer和Heyrovsky-Volmer-HOR机理外, 还讨论了最新提出的氢氧根离子吸附参与的HOR机理来说明在酸性和碱性介质中HOR机理的差异. 然后, 总结了具有代表性的碱性HOR催化剂(如贵金属、合金、金属间化合物、镍基合金、碳化物、氮化物等), 简要介绍了它们相应的HOR反应机理, 从而进一步理解在碱性介质中不同基元反应步骤给HOR性能带来的差异. 最后, 提出了一种未来设计HOR碱性催化剂的可行性方案, 为今后碱性环境下的HOR催化剂设计提供参考.
仇暘, 谢小红, 李文震, 邵玉艳. 碱性介质中氢氧化反应电催化剂的开发: 从机理认识到材料设计[J]. 催化学报, 2021, 42(12): 2094-2104.
Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design[J]. Chinese Journal of Catalysis, 2021, 42(12): 2094-2104.
Fig. 1. Relationship between HOR electrocatalysis and electrochemical double-layer structure. Generic mechanistic reaction schemes for HOR in dilute alkaline electrolytes on mono and bi-metallic catalyst systems. M1 represents a metal site capable of dissociative adsorption of molecular hydrogen. In scheme 2, alloy element Mp represents a precious metal site capable of forming Hupd in alkaline electrolyte. In scheme 3, alloy element Mb represents a base-metal site passivated with adsorbed (hydr)oxide species in dilute alkaline electrolytes. (Reproduced from Ref. [40] with permission from Elsevier. Copyright (2017)).
HOR mechanism | Tafel slope at 25 °C | Note |
---|---|---|
Heyrovsky-Volmer(RDS) | 2.303RT/[(2-α)F] = ~39 mV dec-1 | θH < 0.4 (low ηVol) TS = 39 θH > 0.6 (high ηVol) TS = 118 (close to Heyrovsky-RDS) |
Tafel-Volmer(RDS) | 2.303RT/[(1-α)F] = ~118 mV dec-1 | θH is govern by PH2 Reaction rate is governed by both η and θH (PH2) |
Heyrovsky(RDS)-Volmer | 2.303RT/[(1-α)F] = ~118 mV dec-1 | Hads consumes rapidly (θH ≈ 0); fast Volmer step |
Tafel(RDS)-Volmer* | 2.303RT/2F = ~29 mV dec-1 | Hads consumes rapidly (θH ≈ 0); fast Volmer step Reaction rate could be independent to η (I = nFAkoTPH2) |
Table 1 Tafel slope and kinetic expressions for HOR.
HOR mechanism | Tafel slope at 25 °C | Note |
---|---|---|
Heyrovsky-Volmer(RDS) | 2.303RT/[(2-α)F] = ~39 mV dec-1 | θH < 0.4 (low ηVol) TS = 39 θH > 0.6 (high ηVol) TS = 118 (close to Heyrovsky-RDS) |
Tafel-Volmer(RDS) | 2.303RT/[(1-α)F] = ~118 mV dec-1 | θH is govern by PH2 Reaction rate is governed by both η and θH (PH2) |
Heyrovsky(RDS)-Volmer | 2.303RT/[(1-α)F] = ~118 mV dec-1 | Hads consumes rapidly (θH ≈ 0); fast Volmer step |
Tafel(RDS)-Volmer* | 2.303RT/2F = ~29 mV dec-1 | Hads consumes rapidly (θH ≈ 0); fast Volmer step Reaction rate could be independent to η (I = nFAkoTPH2) |
Fig. 2. Reaction energy diagram showing the complete reaction pathway with rate determining steps for hydrogen oxidation for a catalyst which has a hydroxide adsorption strength from weak to strong. Reproduced from Ref. [37] with the permission from Springer Nature. Copyright (2020).
Metal | ΔEOH*/eV | Metal | ΔEOH*/eV | Metal | ΔEOH*/eV |
---|---|---|---|---|---|
Ag | 0.72 | Au | 1.49 | Co | -0.08 |
Cu | 0.37 | Fe | -0.88 | Ir | 0.63 |
Mo | -0.61 | Ni | 0.13 | Pd | 0.92 |
Pt | 1.05 | Rh | 0.34 | Ru | -0.01 |
W | -0.80 |
Table 2 Calculated hydroxide binding energy (ΔEOH*) over the most close packed surface of different metals at a quarter monolayer coverage, data is cited from Ref. [50].
Metal | ΔEOH*/eV | Metal | ΔEOH*/eV | Metal | ΔEOH*/eV |
---|---|---|---|---|---|
Ag | 0.72 | Au | 1.49 | Co | -0.08 |
Cu | 0.37 | Fe | -0.88 | Ir | 0.63 |
Mo | -0.61 | Ni | 0.13 | Pd | 0.92 |
Pt | 1.05 | Rh | 0.34 | Ru | -0.01 |
W | -0.80 |
Fig. 3. (a) Trassati’s volcano plot for the hydrogen evolution reaction in acid solutions. j00 (same to j0) denotes the exchange current density, and EMH is the energy of hydride formation. (Data is taken from Ref. [24]. Reproduced from Ref. [51] with the permission from Dr. Wolfgang Schmickler). (b) Schematic illustrating the research need to establish HBEapp as the descriptor for HOR/HER: (1) Measuring and/or calculating water adsorption energy of PGMs in different pHs; (2) Measuring and/or calculating water adsorption energy of metals on the weakly binding branch in different pHs; (3) Measuring HOR/HER activities on metals on the weakly binding branch. Exchange current density data represents the activity at 20 °C, and is from [18,20,25,32,57,70,71]. (Reproduced from Ref. [31] with open access).
Fig. 4. (a) Bar graph highlighting experimental HOR exchange current densities as a function of the corresponding trend on the basis of calculated surface hydrogen binding energy (HBE) values for models of “near surface alloys” for Pt, Pt7Ru3, Pt7Fe3, Pt7Co3, Pt7Cu3, and Pt7Au3 NWs, respectively. The trend shown for the theoretical HBE values was based upon the data presented in Ref. [72]. (Figure is reproduced from Ref. [58] with the permission from American Chemical Society. Copyright (2016)). (b) The volcano plot of the experimentally measured exchange current density versus the adsorption hydrogen free energy of Ru-Ni (magenta), Ru (red) and Pt (blue) calculated by DFT in this study where the ΔGH of Ru and Pt were taken from the value most close to 0, and common metal catalysts. (Reproduced from Ref. [65] with the permission from Royal Society of Chemistry. Copyright (2020)).
Fig. 5. (a) Schematic representation of the HOR on Ni(OH)2/Pt(111), Ni(OH)2 provides the active sites for adsorption of reactive OHads, and Pt provides the active sites for dissociative adsorption of H2 and production of Hads, which then react with reactive OHads. (Reproduced from Ref. [33] with the permission from Springer Nature. Copyright (2013)). (b) 3D HER activity volcano for catalyst design. Logarithm of the rate of hydrogen evolution (contours) as a function of hydrogen binding energy and hydroxide binding energy. The water dissociation rate was derived from the binding energies and kinetics on (211) surfaces calculated previously and modified to reference solution-phase hydroxide as the product of water dissociation and then extrapolated to 0 VRHE and to reproduce the barriers calculated here for water dissociation on Pt(111) and Pt(553) (which include the effects of solvation and alkali cation). Black circles correspond to DFT-calculated hydrogen and hydroxide adsorption energies on Pt(111), Pt(553), Ru* adsorbed at the step of Pt(553), a PtRu(111) alloy and Ru* clusters on Pt(111). (c) Rate of the HER or the HOR as a function of the free energy of adsorption of hydroxide. (Figure b and c are reproduced from Ref. [37] with the permission from Springer Nature. Copyright (2020)). (d) Experimentally measured exchange current density, log(i0,s), for hydrogen oxidation in base over different metals plotted with calculated H and OH adsorption potentials. The two dashed lines represent the optimal *H adsorption potential (~0.28 V) and the optimal *OH adsorption potential (~0.75 V), respectively. (Reproduced from Ref. [36] with the permission from American Chemical Society. Copyright (2018)).
Fig. 6. (a) Heat map of the local hydrogen adsorption energy for Ni/graphene (top), Ni/N-graphene (bottom left), and Ni/B-graphene (bottom right). (b) Heat map of the local HOR/HER exchange current density for Ni/graphene (top), Ni/N-graphene (bottom left), and Ni/B-graphene (bottom right). (Reproduced from Ref. [78] with the permission from American Chemical Society. Copyright (2019)).
Catalyst | Reaction conditions | HOR performance | |||||
---|---|---|---|---|---|---|---|
Electrolyte | Temperature (°C) | Loading (µg cm-2) | η to achieve il (mV vs. RHE) | Exchange current density (mA cm-2) | Tafel slope (mV dec-1) | Ref. | |
Pt(pc) | 0.1 M KOH | 21 ± 1.5 | RDE | 250-300 | 0.69 ± 0.03 | 109 | [ |
Pt/C | 0.1 M KOH | 21 ± 1.5 | 7.0 | ~300 | 0.57 ± 0.07 | — | [ |
Pt/C | 0.1 M NaOH | 40 ± 0.0 | 3.0 | — | 1.0 ± 0.01 | — | [ |
Pt/Cu NW | 0.1 M KOH | 23 ± 3.0 | 16.0 (Pt) | ~100 | 2.1 (Pt) | — | [ |
Pt0.8Ru0.2/C | 0.1 M KOH | 23 ± 3.0 | 7.09 (PtRu) | ~140 | 1.42 (Pt) | 35 | [ |
PtRu/C | 0.1 M KOH | 23 ± 3.0 | 3.8 (PtRu) | ~90 | 0.7 (Pt) | — | [ |
PtFe | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | >250 | 0.459 (Pt) | 43.3 | [ |
PtCo | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | >250 | 0.394 (Pt) | 45.7 | [ |
PtAu | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | — | 0.162 (Pt) | 49.6 | [ |
Acid-PtNi/C | 0.1 M KOH | 23 ± 3.0 | 10.0 (Pt) | ~250 | 1.89 ± 0.09 (Pt) | — | [ |
Pd/C | 0.1 M NaOH | 40 ± 0.0 | 16.0 | — | 0.06 ± 0.02 | — | [ |
Pd/C-500C | 0.1 M KOH | 20 ± 0.0 | 20 | ~350 | 0.122 ± 0.005 | 108 | [ |
Pd/Cu NW | 0.1 M KOH | 23 ± 3.0 | 12.5 | >200 | 1.01 (Pd) | — | [ |
Pd0.8Ru0.2/C | 0.1 M KOH | 23 ± 3.0 | 7.06 (PdRu) | ~375 | 0.148 (Pd) | 219 | [ |
Pd/C-CeO2 | 0.1 M KOH | 23 ± 3.0 | 6.5 (Pd) | — | 0.089 | 100 | [ |
Ir/C | 0.1 M NaOH | 40 ± 0.0 | 8.0 | — | 0.37 ± 0.12 | — | [ |
Ir/C | 0.1 M KOH | 20 ± 0.0 | ~250 | 0.21 ± 0.02 | 116 | [ | |
Ir9Ru1/C | 0.1 M KOH | 23 ± 3.0 | 3.5 (IrRu) | ~110 | 0.9 (IrRu) | — | [ |
Ir3Pd1Ru6/C | 0.1 M KOH | 23 ± 3.0 | 3.5 (IrPdRu) | ~100 | 0.6 (IrPdRu) | — | [ |
Ru/C | 0.1 M KOH | 25 ± 0.0 | 10.0 | ~120 | 0.064 | — | [ |
Ru1@Pt1(2 ML) | 1.0 M KOH | 23 ± 0.0 | ~3.0 | — | 1.5 (Pt) | — | [ |
Ru7Ni3/C | 0.1 M KOH | 23 ± 0.0 | 3.9 (Ru) | ~100 | 1.09 | — | [ |
CoNiMo | 0.1 M KOH | 20 ± 0.0 | — | — | 0.015 ± 0.009 | — | [ |
Ni1Cu1/C | 0.1 M KOH | 25 ± 0.0 | 25 (NiCu) | — | 0.0145 | — | [ |
Ni/Graphene | 0.1 M KOH | 23 ± 3.0 | 250 (Ni) | — | 0.030 | — | [ |
Ni/N-CNT | 0.1 M KOH | 23 ± 3.0 | 250 (Ni) | — | 0.028 | — | [ |
Ni1@(h-BN)1/C | 0.1 M NaOH | 23 ± 3.0 | 250 (Ni) | — | 0.023 | — | [ |
NiMo/KB | 0.1 M KOH | 25 ± 0.0 | 100 (w/C) | — | 0.027 ± 0.002 | — | [ |
WNi4 | 0.1 M KOH | 23 ± 3.0 | 500 (WNi) | ~90 | 0.068 | — | [ |
MoNi4 | 0.1 M KOH | 23 ± 3.0 | 500 (MoNi) | ~80 | 0.065 | — | [ |
Ni/SC | 0.1 M KOH | 23 ± 3.0 | 50 (w/C) | — | 0.04 | — | [ |
Table 3 Summary of the HOR performance over representative electrocatalysts in alkaline electrolyte.
Catalyst | Reaction conditions | HOR performance | |||||
---|---|---|---|---|---|---|---|
Electrolyte | Temperature (°C) | Loading (µg cm-2) | η to achieve il (mV vs. RHE) | Exchange current density (mA cm-2) | Tafel slope (mV dec-1) | Ref. | |
Pt(pc) | 0.1 M KOH | 21 ± 1.5 | RDE | 250-300 | 0.69 ± 0.03 | 109 | [ |
Pt/C | 0.1 M KOH | 21 ± 1.5 | 7.0 | ~300 | 0.57 ± 0.07 | — | [ |
Pt/C | 0.1 M NaOH | 40 ± 0.0 | 3.0 | — | 1.0 ± 0.01 | — | [ |
Pt/Cu NW | 0.1 M KOH | 23 ± 3.0 | 16.0 (Pt) | ~100 | 2.1 (Pt) | — | [ |
Pt0.8Ru0.2/C | 0.1 M KOH | 23 ± 3.0 | 7.09 (PtRu) | ~140 | 1.42 (Pt) | 35 | [ |
PtRu/C | 0.1 M KOH | 23 ± 3.0 | 3.8 (PtRu) | ~90 | 0.7 (Pt) | — | [ |
PtFe | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | >250 | 0.459 (Pt) | 43.3 | [ |
PtCo | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | >250 | 0.394 (Pt) | 45.7 | [ |
PtAu | 0.1 M KOH | 23 ± 3.0 | 8.0 (Pt) | — | 0.162 (Pt) | 49.6 | [ |
Acid-PtNi/C | 0.1 M KOH | 23 ± 3.0 | 10.0 (Pt) | ~250 | 1.89 ± 0.09 (Pt) | — | [ |
Pd/C | 0.1 M NaOH | 40 ± 0.0 | 16.0 | — | 0.06 ± 0.02 | — | [ |
Pd/C-500C | 0.1 M KOH | 20 ± 0.0 | 20 | ~350 | 0.122 ± 0.005 | 108 | [ |
Pd/Cu NW | 0.1 M KOH | 23 ± 3.0 | 12.5 | >200 | 1.01 (Pd) | — | [ |
Pd0.8Ru0.2/C | 0.1 M KOH | 23 ± 3.0 | 7.06 (PdRu) | ~375 | 0.148 (Pd) | 219 | [ |
Pd/C-CeO2 | 0.1 M KOH | 23 ± 3.0 | 6.5 (Pd) | — | 0.089 | 100 | [ |
Ir/C | 0.1 M NaOH | 40 ± 0.0 | 8.0 | — | 0.37 ± 0.12 | — | [ |
Ir/C | 0.1 M KOH | 20 ± 0.0 | ~250 | 0.21 ± 0.02 | 116 | [ | |
Ir9Ru1/C | 0.1 M KOH | 23 ± 3.0 | 3.5 (IrRu) | ~110 | 0.9 (IrRu) | — | [ |
Ir3Pd1Ru6/C | 0.1 M KOH | 23 ± 3.0 | 3.5 (IrPdRu) | ~100 | 0.6 (IrPdRu) | — | [ |
Ru/C | 0.1 M KOH | 25 ± 0.0 | 10.0 | ~120 | 0.064 | — | [ |
Ru1@Pt1(2 ML) | 1.0 M KOH | 23 ± 0.0 | ~3.0 | — | 1.5 (Pt) | — | [ |
Ru7Ni3/C | 0.1 M KOH | 23 ± 0.0 | 3.9 (Ru) | ~100 | 1.09 | — | [ |
CoNiMo | 0.1 M KOH | 20 ± 0.0 | — | — | 0.015 ± 0.009 | — | [ |
Ni1Cu1/C | 0.1 M KOH | 25 ± 0.0 | 25 (NiCu) | — | 0.0145 | — | [ |
Ni/Graphene | 0.1 M KOH | 23 ± 3.0 | 250 (Ni) | — | 0.030 | — | [ |
Ni/N-CNT | 0.1 M KOH | 23 ± 3.0 | 250 (Ni) | — | 0.028 | — | [ |
Ni1@(h-BN)1/C | 0.1 M NaOH | 23 ± 3.0 | 250 (Ni) | — | 0.023 | — | [ |
NiMo/KB | 0.1 M KOH | 25 ± 0.0 | 100 (w/C) | — | 0.027 ± 0.002 | — | [ |
WNi4 | 0.1 M KOH | 23 ± 3.0 | 500 (WNi) | ~90 | 0.068 | — | [ |
MoNi4 | 0.1 M KOH | 23 ± 3.0 | 500 (MoNi) | ~80 | 0.065 | — | [ |
Ni/SC | 0.1 M KOH | 23 ± 3.0 | 50 (w/C) | — | 0.04 | — | [ |
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 卢明佳, 梁乐程, 冯彬彬, 常译文, 黄志宏, 宋慧宇, 杜丽, 廖世军, 崔志明. 燃料电池多孔碳载体高石墨化的超快速碳热冲击策略[J]. 催化学报, 2023, 52(9): 228-238. |
[6] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[7] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[8] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[9] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[13] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[14] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[15] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||