催化学报 ›› 2025, Vol. 68: 345-355.DOI: 10.1016/S1872-2067(24)60158-0
董飞祥a,1, 金添a,1, 余小娟b,1, 王红月a, 陈琦a, 许建和a, 郑高伟a,*()
收稿日期:
2024-08-27
接受日期:
2024-09-26
出版日期:
2025-01-18
发布日期:
2025-01-02
通讯作者:
* 电子信箱: gaoweizheng@ecust.edu.cn (郑高伟).作者简介:
1共同第一作者.
基金资助:
Fei-Xiang Donga,1, Tian Jina,1, Xiaojuan Yub,1, Hong-Yue Wanga, Qi Chena, Jian-He Xua, Gao-Wei Zhenga,*()
Received:
2024-08-27
Accepted:
2024-09-26
Online:
2025-01-18
Published:
2025-01-02
Contact:
* E-mail: About author:
1Contributed equally to this work.
Supported by:
摘要:
双手性邻位氨基醇广泛存在于天然产物、药物分子以及精细化学品中, 其同时含有的手性羟基和手性氨基决定了生物活性分子关键的生理功能和药学性质, 因此手性氨基醇砌块的合成方法成为近年研究热点之一. 除传统的化学合成方法外, 生物催化方法高效合成手性氨基醇也引起了科学家们的关注. 然而在大多数手性氨基醇的生物合成方法中, 生成产物仅有一个手性中心, 对于双手性邻位氨基醇的合成研究报道还较少. 基于此, 本文以还原胺化反应为基础, 从单一底物出发, 设计并构建了新型的双手性邻位氨基醇酶法级联催化合成路线, 合成了多元化的邻位氨基醇立体异构体.
本文通过逆合成分析法设计了一条包含环氧水解酶(LEH)、醇脱氢酶(BDHA或BUDC)、还原胺化酶(RedAm)或胺脱氢酶(AmDH)的三酶级联路线, 从底物环氧环己烷出发, 经过水解、氧化以及还原胺化反应生成2-氨基环己醇的四种立体异构体. 通过对文献报道和实验室构建的酶库进行筛选, 并对筛选得到的酶元件进行组合, 初步构建了分别合成2-氨基环己醇四种立体异构体的三酶级联催化合成路线. 随后在分析合成SR-氨基环己醇的合成路线中, 由于关键酶RsRedAm的选择性差导致产物立体选择性不佳, 通过四轮饱和突变获得立体选择性提高的三突变体RsRedAm-M3 (N92C/W205F/M235N), 其de值从母本的52%提升至98%. 最后, 应用反应工程的手段对已构建的三酶级联反应进行了双模块优化, 包括级联形式、缓冲液浓度、缓冲液pH以及催化剂上载量. 经过条件优化后, 四种2-氨基环己醇立体异构体的反应效果均有所提高, 其中, (1R,2R)-、(1R,2S)-和(1S,2S)-构型氨基环己醇产物的产率均大于90%, 而(1S,2R)-氨基环己醇也从26%提高到50%. 在最优反应条件下, 对四种构型的2-氨基环己醇分别进行了制备. 此外, 为了拓展级联反应的应用范围, 分别测定了以甲胺、烯丙胺、炔丙胺和环丙胺作为有机胺供体条件下级联反应的合成效果, 分析得率高达97%, de值达67%-99%, 表明该手性氨基醇的多酶级联策略具有一定的应用潜力.
综上, 本文开发的人工多酶级联合成途径能够实现对2-氨基环己醇的四种立体异构体及2-烷基氨基环己醇的高效合成, 该方法对于其他多手性化合物的人工多酶级联途径的设计与构建具有参考意义.
董飞祥, 金添, 余小娟, 王红月, 陈琦, 许建和, 郑高伟. 双手性邻位氨基环己醇的人工级联生物催化合成[J]. 催化学报, 2025, 68: 345-355.
Fei-Xiang Dong, Tian Jin, Xiaojuan Yu, Hong-Yue Wang, Qi Chen, Jian-He Xu, Gao-Wei Zheng. Artificial cascade biocatalysis for the synthesis of 2-aminocyclohexanols with contiguous stereocenters[J]. Chinese Journal of Catalysis, 2025, 68: 345-355.
Scheme 1. Design of artificial cascade biocatalysis for accessing all stereoisomers of 2-aminocyclohexanol 4. (A) Retrosynthetic analysis of 2-aminocyclohexanol 4 from cyclohexene oxide 1. (B) The artificial biocatalytic cascade comprising an epoxide hydrolase (EH), an alcohol dehydrogenase (ADH), a reductive aminase (RedAm) or an amine dehydrogenase (AmDH), an NADH oxidase (NOX) and a formate dehydrogenase (FDH). (C) Four different cascade routes for accessing all four 2-aminocyclohexanol stereoisomers from simple epoxide 1.
Fig. 2. Cascade biotransformation of module 1. (A) Recombinant E. coli strain coexpressing EH and ADH on plasmid pRSFDuet-1 used as whole-cell biocatalyst of module 1 for the synthesis of intermediate 3 from starting substrate 1. (B) Synthesis of (R)- and (S)-3 catalyzed by various E. coli strains coexpressing different EHs and ADHs. (C) GC chromatography of biotransformation mediated by E. coli (ReLEH-SZ529/BDHA) and E. coli (ReLEH-H178/BUDC).
Fig. 3. The screening of RedAms or AmDHs in module 2 through reductive amination of 3 yielded in module 1. Larger bars correspond to higher yield of 4 (red: (1R,2R)-4, green: (1R,2S)-4, orange: (1S,2R)-4, blue: (1S,2S)-4). Enzymes marked with asterisk are selected as the best catalysts for the construction of module 2.
Route | Module 1 | Module 2 | Product | Yield of 4 c (%) | de c (%) | ee c (%) |
---|---|---|---|---|---|---|
Route 1 a | E. coli (ReLEH-SZ529/BDHA) | AmtRedAm/BstFDH | (1R,2R)-4 | 90 | 97 | >99 |
Route 2 b | E. coli (ReLEH-SZ529/BDHA) | LfAmDHK68C/N261L/CbFDH | (1R,2S)-4 | 71 | 85 | 89 |
Route 3 a | E. coli (ReLEH-H178/BUDC) | RsRedAm/BstFDH | (1S,2R)-4 | 13 | 52 | >99 |
Route 4 b | E. coli (ReLEH-H178/BUDC) | LfAmDHK68C/N261L/CbFDH | (1S,2S)-4 | 67 | 87 | 98 |
Table 1 The synthesis of all four stereoisomers of 2-aminocyclohexanol 4 by different cascade routes under unoptimized reaction conditions.
Route | Module 1 | Module 2 | Product | Yield of 4 c (%) | de c (%) | ee c (%) |
---|---|---|---|---|---|---|
Route 1 a | E. coli (ReLEH-SZ529/BDHA) | AmtRedAm/BstFDH | (1R,2R)-4 | 90 | 97 | >99 |
Route 2 b | E. coli (ReLEH-SZ529/BDHA) | LfAmDHK68C/N261L/CbFDH | (1R,2S)-4 | 71 | 85 | 89 |
Route 3 a | E. coli (ReLEH-H178/BUDC) | RsRedAm/BstFDH | (1S,2R)-4 | 13 | 52 | >99 |
Route 4 b | E. coli (ReLEH-H178/BUDC) | LfAmDHK68C/N261L/CbFDH | (1S,2S)-4 | 67 | 87 | 98 |
Fig. 4. Directed evolution of wild-type (WT) RsRedAm to improve its properties. (A) Docking of (S)-3 and NADPH into the active site of WT RsRedAm. N92, W205, M235, and Q236 surrounding the substrate binding pocket were chosen for evolution. (B) Diastereomeric excess (de) of product (1S,2R)-4 generated by different RsRedAm mutants. (C) Analytic yield of product (1S,2R)-4 formed in biocatalytic cascades involving WT RsRedAm and RsRedAm-M3.
Fig. 5. Optimization of cascade modes. (A) Cascade mode A: module 1 and module 2 were cascaded using recombinant E. coli cells and cell-free extract of enzymes, respectively. (B) Cascade mode B: module 1 and module 2 were cascaded using two E. coli strains, respectively. (C) Cascade mode C: One single E. coli strain coexpressing EH, ADH, and AmDH was used for cascade of module 1 and module 2. Yield is referred to as analytic yield.
Fig. 6. Optimization of NH4+ concentration and pH of the cascade system. (A) Effect of NH4+ concentration on the yield of product 4. (1R,2R)-4 and (1S,2R)-4 were synthesized using RedAms of module 2. (1R,2S)-4 and (1S,2S)-4 were synthesized using AmDHs of module 2. (B) Biocatalytic reaction and spontaneous chemical ammonolysis occurred simultaneously in the artificial cascade system. (C) Effect of pH of cascade route 1 on optical purity of (1R,2R)-4. (D) Effect of pH of cascade route 2 on optical purity of (1R,2S)-4. (E) Effect of pH of cascade route 3 on optical purity of (1S,2R)-4. (F) Effect of pH of cascade route 4 on optical purity of (1S,2S)-4. Yield is referred to as analytic yield.
Route | Cascade catalyst | RedAms or AmDHs loading (g L−1) | Yield of 4 c (%) | de c (%) |
---|---|---|---|---|
Route 1a | E coli (ReLEH-SZ529/ BDHA) + cell-free extract of AmtRedAm and BstFDH | 5 | 92 | 97 (1R,2R) |
10 | 94 | 97 (1R,2R) | ||
15 | 95 | 97 (1R,2R) | ||
20 | 93 | 97 (1R,2R) | ||
Route 2b | E coli (ReLEH-SZ529/ BDHA) + cell-free extract of LfAmDHK68C/N261L and CbFDH | 5 | 72 | 87 (1R,2S) |
10 | 93 | 85 (1R,2S) | ||
15 | 93 | 85 (1R,2S) | ||
20 | 95 | 85 (1R,2S) | ||
Route 3a | E coli (ReLEH-H178/BUDC) + cell-free extract of RsRedAm-M3 and BstFDH | 5 | 26 | 97 (1S,2R) |
10 | 40 | 98 (1S,2R) | ||
15 | 48 | 98 (1S,2R) | ||
20 | 50 | 98 (1S,2R) | ||
Route 4b | E coli (ReLEH-H178/BUDC) + cell-free extract of LfAmDHK68C/N261L and CbFDH | 5 | 61 | 91 (1S,2S) |
10 | 85 | 92 (1S,2S) | ||
15 | 94 | 92 (1S,2S) | ||
20 | 94 | 92 (1S,2S) |
Table 2 Optimization of loading of RedAms or AmDHs in module 2.
Route | Cascade catalyst | RedAms or AmDHs loading (g L−1) | Yield of 4 c (%) | de c (%) |
---|---|---|---|---|
Route 1a | E coli (ReLEH-SZ529/ BDHA) + cell-free extract of AmtRedAm and BstFDH | 5 | 92 | 97 (1R,2R) |
10 | 94 | 97 (1R,2R) | ||
15 | 95 | 97 (1R,2R) | ||
20 | 93 | 97 (1R,2R) | ||
Route 2b | E coli (ReLEH-SZ529/ BDHA) + cell-free extract of LfAmDHK68C/N261L and CbFDH | 5 | 72 | 87 (1R,2S) |
10 | 93 | 85 (1R,2S) | ||
15 | 93 | 85 (1R,2S) | ||
20 | 95 | 85 (1R,2S) | ||
Route 3a | E coli (ReLEH-H178/BUDC) + cell-free extract of RsRedAm-M3 and BstFDH | 5 | 26 | 97 (1S,2R) |
10 | 40 | 98 (1S,2R) | ||
15 | 48 | 98 (1S,2R) | ||
20 | 50 | 98 (1S,2R) | ||
Route 4b | E coli (ReLEH-H178/BUDC) + cell-free extract of LfAmDHK68C/N261L and CbFDH | 5 | 61 | 91 (1S,2S) |
10 | 85 | 92 (1S,2S) | ||
15 | 94 | 92 (1S,2S) | ||
20 | 94 | 92 (1S,2S) |
Fig. 7. Time course of cascade biocatalysis for the synthesis of (1R,2R)-4 (A), (1R,2S)-4 (B), (1S,2R)-4 (C), and (1S,2S)-4 (D) from starting substrate 1 in 100 mL preparative-scale under optimization reaction conditions.
|
[1] | 吴振华, 石家福, 张博禹, 焦彧帅, 孟祥萱, 储子仪, 陈裕, 程怡然, 姜忠义. 基于共轭微孔聚合物的高性能多酶级联催化系统[J]. 催化学报, 2024, 63(8): 213-223. |
[2] | 曹宇飞, 戈钧. 酶复合催化剂原位合成新方法及生物催化应用[J]. 催化学报, 2021, 42(10): 1625-1633. |
[3] | Aqib Zafar Khan, Muhammad Bilal, Tahir Rasheed, Hafiz M. N. Iqbal. 生物催化进展:从计算到代谢工程[J]. 催化学报, 2018, 39(12): 1861-1868. |
[4] | 李清华, 董源, 陈飞飞, 柳磊, 李春秀, 许建和, 郑高伟. Brevibacterium epidermidis催化酮不对称还原胺化合成(S)-手性胺[J]. 催化学报, 2018, 39(10): 1625-1632. |
[5] | 黄杏甜, 李志鹏, 王东阳, 李毅群. 牛血清白蛋白:一种催化四组分反应合成吡喃[2,3-c]并吡唑类化合物的高效和绿色生物催化剂[J]. 催化学报, 2016, 37(9): 1461-1468. |
[6] | 王依龙, 张云, 孙爱君, 胡云峰. 一种新颖海洋微生物酯酶的功能鉴定及其在D-乳酸甲酯制备中的应用[J]. 催化学报, 2016, 37(8): 1396-1402. |
[7] | 邓盾, 张云, 孙爱君, 胡云峰. 一个具有相反光学选择性的新颖海洋GDSL脂肪酶MT6用于(S)-1-苯基乙醇制备[J]. 催化学报, 2016, 37(11): 1966-1974. |
[8] | Elsa Cherian, Mahendradas Dharmendirakumar, Gurunathan Baskar. MnO2纳米粒子固载纤维素酶用于高效水解农业废弃物制备生物乙醇[J]. 催化学报, 2015, 36(8): 1223-1229. |
[9] | 纪德彬, 王磊, 周雍进, 杨薇, 王倩, 赵宗保. 利用人工氧还酶体系催化 L-苹果酸氧化脱羧反应[J]. 催化学报, 2012, 33(3): 530-535. |
[10] | 宋昊, 张颖鑫, 孔维宝, 夏春谷. 甲基弯菌 IMV3011 生物催化合成聚 β-羟基丁酸酯途径中关键作用酶的活性[J]. 催化学报, 2012, 33(11): 1754-1761. |
[11] | 王梦亮, 郭春侠. 离子液体中 β-葡萄糖苷酶生物催化合成红景天甙[J]. 催化学报, 2011, 32(6): 1051-1055. |
[12] | 王丹, 张强, 李旺, 戚南昌, 郭春晓, 杨志荣, 张杰. 酵母静息细胞催化丙酮酸乙酯不对称还原制 (S)-乳酸乙酯[J]. 催化学报, 2011, 32(6): 1035-1039. |
[13] | 王梦亮;闫甫昆. 类球红杆菌羰基还原酶不对称催化还原性能与底物结构的关系[J]. 催化学报, 2010, 31(2): 195-199. |
[14] | 董青, 欧阳立明, 刘建文, 许建和. 纳米磁粉固定化酶催化合成 α-D-葡萄糖-1-磷酸[J]. 催化学报, 2010, 31(10): 1227-1232. |
[15] | 郭晓洁;辛宝平;马兴泰;夏云婷;陈 实;杨业鹏. 克雷伯氏菌和伯克霍尔德氏菌复合菌群催化三硝基甲苯降解[J]. 催化学报, 2009, 30(12): 1261-1268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||